首页> 外文会议>ACM/IEEE Symposium on Edge Computing >Privacy Partition: A Privacy-Preserving Framework for Deep Neural Networks in Edge Networks
【24h】

Privacy Partition: A Privacy-Preserving Framework for Deep Neural Networks in Edge Networks

机译:隐私分区:边缘网络中用于深度神经网络的隐私保护框架

获取原文

摘要

The rise of the Internet of Things (IoT) encourages an emerging computing paradigm - edge computing - which leverages innovations in 'last mile' communications infrastructure to provide improved quality of service guarantees to compute-intensive services such as autonomous driving and improved support for connected devices. Many high-value edge computing applications benefit from an integration of privacy-sensitive resource-constrained local data streams and data-hungry resource-constrained analytic tools like deep neural networks. We propose a practical method for privacy-preservation in deep learning classification tasks based on bipartite topology threat modeling and an interactive adversarial deep network construction in the context of edge computing. We term this approach Privacy Partition. A bipartite topology consisting of a trusted local partition and untrusted remote partition provides an apt alternative to centralized and federated collaborative deep learning frameworks in the case of deployment contexts such as IoT smart spaces, where users would like to restrict access to high-resolution data streams due to privacy concerns but would still like to benefit from deep learning services and external computational resources such as remote cloud data centers.
机译:物联网(IoT)的兴起鼓励了一种新兴的计算范例-边缘计算-它利用“最后一英里”通信基础架构中的创新来为计算密集型服务(例如,自动驾驶和对联网的更好支持)提供改进的服务质量保证设备。许多高价值边缘计算应用程序受益于隐私敏感型资源受限的本地数据流和数据密集型资源受限的分析工具(如深度神经网络)的集成。我们提出了一种基于二元拓扑威胁建模和边缘计算环境下的交互式对抗性深度网络构建的深度学习分类任务中隐私保护的实用方法。我们将这种方法称为“隐私分区”。在诸如IoT智能空间等用户希望限制对高分辨率数据流访问的部署上下文中,由受信任的本地分区和不受信任的远程分区组成的双向拓扑为集中式和联合协作式深度学习框架提供了一种合适的替代方案出于隐私考虑,但仍希望从深度学习服务和外部计算资源(例如远程云数据中心)中受益。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号