首页> 外文会议>ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD'06); 20060820-23; Philadelphia,PA(US) >Fast Mining of High Dimensional Expressive Contrast Patterns Using Zero-Suppressed Binary Decision Diagrams
【24h】

Fast Mining of High Dimensional Expressive Contrast Patterns Using Zero-Suppressed Binary Decision Diagrams

机译:使用零抑制二元决策图快速挖掘高维表达对比模式

获取原文
获取原文并翻译 | 示例

摘要

Patterns of contrast are a very important way of comparing multidimensional datasets.. Such patterns are able to capture regions of high difference between two classes of data, and are useful for human experts and the construction of classifiers. However, mining such patterns is particularly challenging when the number of dimensions is large This paper describes a new technique for mining several varieties of contrast pattern, based on the use of Zero-Suppressed Binary Decision Diagrams (ZBDDs), a powerful data structure for manipulating sparse data. We study the mining of both simple contrast patterns, such as emerging patterns, and more novel and complex contrasts, which we call disjunctive emerging patterns A performance study demonstrates our ZBDD technique is highly scalable, substantially improves on state of the art mining for emerging patterns and can be effective for discovering complex contrasts from datasets with thousands of attributes.
机译:对比模式是比较多维数据集的一种非常重要的方式。这种模式能够捕获两类数据之间的高度差异区域,对人类专家和分类器的构造很有用。但是,当维数较大时,挖掘此类模式尤其具有挑战性。本文介绍了一种基于零抑制二进制决策图(ZBDD)(一种用于操作的强大数据结构),用于挖掘多种对比模式的新技术。稀疏数据。我们研究了简单对比模式(例如新兴模式)的挖掘,以及更新颖和复杂的对比,我们将其称为析取新兴模式。性能研究表明,我们的ZBDD技术具有高度可扩展性,大大改善了新兴模式的最新挖掘技术并且可以有效地从具有数千个属性的数据集中发现复杂的对比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号