首页> 外文会议>ACM conference on data and application security and privacy 2011 >Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs
【24h】

Detection of Anomalous Insiders in Collaborative Environments via Relational Analysis of Access Logs

机译:通过访问日志的关系分析检测协作环境中的异常内部人员

获取原文
获取原文并翻译 | 示例

摘要

Collaborative information systems (CIS) are deployed within a diverse array of environments, ranging from the Internet to intelligence agencies to healthcare. It is increasingly the case that such systems are applied to manage sensitive information, making them targets for malicious insiders. While sophisticated security mechanisms have been developed to detect insider threats in various file systems, they are neither designed to model nor to monitor collaborative environments in which users function in dynamic teams with complex behavior. In this paper, we introduce a community-based anomaly detection system (CADS), an unsupervised learning framework to detect insider threats based on information recorded in the access logs of collaborative environments. CADS is based on the observation that typical users tend to form community structures, such that users with low affinity to such communities are indicative of anomalous and potentially illicit behavior. The model consists of two primary components: relational pattern extraction and anomaly detection. For relational pattern extraction, CADS infers community structures from CIS access logs, and subsequently derives communities, which serve as the CADS pattern core. CADS then uses a formal statistical model to measure the deviation of users from the inferred communities to predict which users are anomalies. To empirically evaluate the threat detection model, we perform an analysis with six months of access logs from a real electronic health record system in a large medical center, as well as a publicly-available dataset for replication purposes. The results illustrate that CADS can distinguish simulated anomalous users in the context of real user behavior with a high degree of certainty and with significant performance gains in comparison to several competing anomaly detection models.
机译:协作信息系统(CIS)部署在各种各样的环境中,从Internet到情报机构再到医疗保健。越来越多的情况是,将此类系统应用于管理敏感信息,使其成为恶意内部人员的目标。尽管已经开发了复杂的安全机制来检测各种文件系统中的内部威胁,但它们既不是设计模型也不是监视用户在具有复杂行为的动态团队中工作的协作环境。在本文中,我们介绍了一个基于社区的异常检测系统(CADS),这是一种基于协作环境访问日志中记录的信息的无监督学习框架,用于检测内部威胁。 CADS基于以下观察结果:典型用户倾向于形成社区结构,因此对此类社区的亲和力低的用户表示异常和潜在的非法行为。该模型包括两个主要部分:关系模式提取和异常检测。对于关系模式提取,CADS从CIS访问日志中推断社区结构,然后派生社区,这些社区将作为CADS模式核心。然后,CADS使用正式的统计模型来衡量用户与推断社区的偏差,以预测哪些用户是异常用户。为了从经验上评估威胁检测模型,我们使用来自大型医疗中心的真实电子健康记录系统的六个月访问日志以及用于复制目的的公开可用数据集进行了分析。结果表明,与几种竞争异常检测模型相比,CADS可以在真实用户行为的背景下以高度确定性和显着的性能提升来区分模拟的异常用户。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号