首页> 外文会议>The 9th World Multi-Conference on Systemics, Cybernetics and Informatics(WMSCI 2005) vol.9 >Application of Ultra-Thin Silicon Technology to Submillimeter Detection and Mixing
【24h】

Application of Ultra-Thin Silicon Technology to Submillimeter Detection and Mixing

机译:超薄硅技术在亚毫米波检测与混合中的应用

获取原文
获取原文并翻译 | 示例

摘要

Superconducting based SIS and HEB detectors continue to yield improved noise temperatures at submillimeter wavelengths. These higher frequencies present new challenges, particularly for waveguide based designs where the tolerances for mounting small mixer chips become quite narrow. Also, conventional millimeter wavelength techniques for making the IF and ground connections are more prone to error. As the device technology for these SIS and HEB-based detectors matures, there is also an increased interest in integrated receiver arrays. These challenges call for simpler mounting designs and more repeatable assembly techniques. Our research group, at the University of Virginia, is meeting these challenges with a new ultra-thin mixer chip technology, with integrated gold beam leads, first reported in . We have since further developed and improved on this technology. We have several ongoing SIS, HEB and OMT projects which utilize these capabilities. Most important to this technology is the transition from the conventional use of quartz as a circuit substrate material to that of ultra-thin (< 10 microns) silicon. We accomplish this by creating the mixer circuitry on a silicon-on-insulator (SOI) wafer and using a sophisticated backside release process to produce individual mixer chips. These 3 micron ultra-thin chips present less dielectric material within a waveguide channel and are actually much more robust than quartz chips that are an order of magnitude, or more, thicker. We use integrated 1-2 micron thick gold beam leads to simplify the electrical connection and placement of the chip within the receiver waveguide. Beam leads are another component of the mounting process that makes our modular mixer implementation possible. Based on our SOI process, we are currently developing several HEB mixers- two single element metal waveguide designs at 600 GHz and 1.6 THz, and an integrated array approach using silicon laser micromachined blocks centered at 900 GHz and 1.8 THz. We are also pursuing several SIS mixersone single element 350-500 GHz design with ultra wide IF bandwidth and one 350 GHz receiver array. In this paper we will discuss our ultra thin silicon beam lead technology and the ongoing progress of these new receivers.
机译:基于超导的SIS和HEB检测器继续在亚毫米波长下产生改善的噪声温度。这些更高的频率提出了新的挑战,特别是对于基于波导的设计,在这种设计中,安装小型混频器芯片的公差变得非常狭窄。同样,用于建立IF和接地连接的常规毫米波波长技术更容易出错。随着用于这些基于SIS和HEB的检测器的设备技术的成熟,对集成接收器阵列的兴趣也越来越高。这些挑战要求更简单的安装设计和更多可重复的组装技术。我们位于弗吉尼亚大学的研究小组正在通过一种新的超薄混频器芯片技术来应对这些挑战,该技术具有集成的金束引线,首次在上发表。此后,我们对该技术进行了进一步的开发和改进。我们正在进行几个利用这些功能的SIS,HEB和OMT项目。对于这项技术而言,最重要的是从常规使用石英作为电路基板材料到超薄(<10微米)硅的过渡。我们通过在绝缘体上硅(SOI)晶片上创建混频器电路并使用复杂的背面释放工艺来生产单个混频器芯片来实现此目的。这3微米的超薄芯片在波导通道中的电介质材料较少,实际上比石英芯片坚固得多,石英芯片的数量级甚至更大。我们使用集成的1-2微米厚的金束引线来简化芯片的电连接和在接收器波导中的放置。束状引线是安装过程的另一个组成部分,这使得我们的模块化混频器实现成为可能。基于我们的SOI工艺,我们目前正在开发几种HEB混频器-两个600 GHz和1.6 THz的单元素金属波导设计,以及使用以900 GHz和1.8 THz为中心的硅激光微加工模块的集成阵列方法。我们还追求几种SIS混频器,即具有超宽IF带宽和一个350 GHz接收器阵列的单元素350-500 GHz设计。在本文中,我们将讨论我们的超薄硅束引线技术以及这些新型接收器的最新进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号