首页> 外文会议>9th International Workshop on Systems, Signals and Image Processing (IWSSIP) Nov 7-8, 2002 Manchester Town Hall, UK >DATA MINING AND TELECOMMUNICATION FRAUD DETECTION USING ARTIFICIAL NEURAL NETWORKS
【24h】

DATA MINING AND TELECOMMUNICATION FRAUD DETECTION USING ARTIFICIAL NEURAL NETWORKS

机译:基于人工神经网络的数据挖掘与电信欺诈检测

获取原文
获取原文并翻译 | 示例

摘要

This paper presents the use of neural networks for the detection of telecommunication fraud using the new concept of profiling. Fraud is a multi-billions dollar problem around the globe. The problem with telecommunication fraud is the huge loss of revenue and it can affect the credibility and performance of the telecommunication companies. The most difficult problem that faces the industry is the fact that fraud is dynamic. This means that whenever fraudesters feel that they will be detected, they find other ways to circumvent security measures. The advantage of using neural networks for detecting fraud is that the nonlinear nature and the parallel structure of the networks allow them to extract fraudulent behaviours without having to know the related equations. The network was successfully trained using simulated data resulting in a 98% detection rate when tested for call-sell fraud.
机译:本文介绍了使用新的配置文件概念将神经网络用于电信欺诈的检测。欺诈是全球数十亿美元的问题。电信欺诈的问题是收入的巨大损失,并且可能影响电信公司的信誉和业绩。业界面临的最困难的问题是欺诈是动态的。这意味着,每当欺诈者感到将要检测到欺诈者时,他们就会找到其他方法来规避安全措施。使用神经网络检测欺诈的优势在于,网络的非线性性质和并行结构使他们无需知道相关方程式即可提取欺诈行为。使用模拟数据对网络进行了成功的训练,在测试电话销售欺诈时,检出率为98%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号