首页> 外文会议>8th World Multi-Conference on Systemics, Cybernetics and Informatics(SCI 2004) vol.5: Computer Science and Engineering >A Neural Network Model for Storing and Retrieving 2D Images of Rotated 3D Object Using Principal Components
【24h】

A Neural Network Model for Storing and Retrieving 2D Images of Rotated 3D Object Using Principal Components

机译:使用主成分存储和检索旋转3D对象的2D图像的神经网络模型

获取原文
获取原文并翻译 | 示例

摘要

A neural network model for storing and retrieving two-dimensional (2D) images of rotated three-dimensional (3D) object is presented, where principal components of the 2D images are used for data compression. The network is for examining how we can store and retrieve huge amount of images, and how we can construct a neural model of the mental rotation which is supposed to play important roles in human perception. Numerical experiments with the present model show that we can store and retrieve a huge amount of 2D images due to the eigenspace method utilizing principal components, while achieving the calculation time for retrieving rotated images being proportional to the rotation angle.
机译:提出了一种用于存储和检索旋转的三维(3D)对象的二维(2D)图像的神经网络模型,其中2D图像的主要成分用于数据压缩。该网络用于检查我们如何存储和检索大量图像,以及如何构建心理旋转的神经模型,该模型应该在人类感知中起重要作用。使用本模型进行的数值实验表明,由于利用主成分的特征空间方法,我们可以存储和检索大量的2D图像,同时获得了与旋转角度成比例的检索旋转图像的计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号