首页> 外文会议>The 8th Asian symposium on geographic information systems from a computer science amp; engineering viewpoint. >Extended R-tree Based Spatial Top-K Query Method over Spatial Multi Data Streams
【24h】

Extended R-tree Based Spatial Top-K Query Method over Spatial Multi Data Streams

机译:空间多数据流上基于扩展R树的空间Top-K查询方法

获取原文
获取原文并翻译 | 示例

摘要

Advanced information Technology make every subject have its current station and share it with human. Through the large quantity data, in order to catch the interesting data only, top-k query is used. The current studied top-k query algorithms over general data focus on reducing time complexity and memory complexity only. However ubiquitous computing require location based analyze. Network monitoring police systems hope to catch the criminal position as soon as the network attacks happen. Over these systems spatial top-k query could solve the problem quickly. This paper studied current top-k query method over traditional database systems also with data stream systems. Then this paper proposed extended r-tree based spatial top-k query method over spatial multi data streams. The proposed method manages local topk' elements over data streams using R-tree nodes that constructed with binary list structure. By this way it can find the top-k elements' position efficiently and continuously. Through the experiment test, the proposed method is developed and compared with current method space saving method and TA(Threshold algorithm), and performed its efficiency.
机译:先进的信息技术使每个主题都具有当前的地位并与人类共享。通过大量数据,为了仅捕获有趣的数据,使用了top-k查询。当前针对通用数据研究的top-k查询算法仅关注减少时间复杂度和内存复杂度。但是,无处不在的计算需要基于位置的分析。网络监控警察系统希望在网络攻击发生后立即抓获犯罪分子。在这些系统上,空间前k个查询可以快速解决问题。本文研究了传统的数据库系统以及数据流系统上的当前top-k查询方法。然后,本文提出了一种基于扩展r树的空间多数据流空间top-k查询方法。所提出的方法使用以二进制列表结构构造的R-tree节点来管理数据流上的本地topk'元素。这样,它可以连续有效地找到前k个元素的位置。通过实验测试,提出了该方法,并与当前方法节省空间的方法和阈值算法(TA)进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号