【24h】

A Graph-matching based Intra-node Task Assignment Methodology for SMP Clusters

机译:SMP集群的基于图匹配的节点内任务分配方法

获取原文
获取原文并翻译 | 示例

摘要

Load distribution for parallel applications on a cluster of Symmetrical Multi-processors(SMP) poses a challenging problem. A cluster of SMPs essentially comprises of a finite number of computing nodes each comprising of 2 or more identical, tightly coupled processing elements, the nodes being connected over a network. While approximate methods of load balancing using standard methods like graph-partitioning, for example, can produce acceptable task assignment across the nodes, they cannot be applied to obtain optimal task assignment on the processors constituting a node. This is because of the complex optimisation involved when one considers the fact that all the processing elements in a node have only one network interface and the node turn-around time is the minimum when the computation and communication activities of the processing elements can be interleaved optimally. A graph-matching based methodology using multi-level refinement is proposed in this paper. Compared to a traditional graph-matching based load balancing algorithm, where worst case (exponential) complexity occurs in practice as the number of task modules increases, this methodology produces optimal assignments within acceptable run time using a multi-level refinement approach and hence can be used for practical applications.
机译:对称多处理器(SMP)群集上的并行应用程序负载分配是一个具有挑战性的问题。 SMP集群实质上包括有限数量的计算节点,每个计算节点都包含2个或更多个相同的紧密耦合的处理元素,这些节点通过网络连接。尽管使用标准方法(例如图形分区)进行负载平衡的近似方法可以在整个节点上产生可接受的任务分配,但它们无法应用于在构成节点的处理器上获得最佳任务分配。这是因为考虑到一个节点中的所有处理元件只有一个网络接口,并且当处理元件的计算和通信活动可以最佳地交错时,节点的周转时间最短的事实所涉及的复杂优化。 。本文提出了一种基于图匹配的多级细化方法。与传统的基于图匹配的负载平衡算法相比,在实际中,随着任务模块数量的增加,最坏情况(指数)复杂性实际上会发生,该方法使用多级优化方法在可接受的运行时间内产生了最佳分配,因此可以用于实际应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号