首页> 外文会议>6th International Conference on Soft Computing and Pattern Recognition >Possibility theory for supervised classification of remotely sensed images: A study case in an urban area in Algeria
【24h】

Possibility theory for supervised classification of remotely sensed images: A study case in an urban area in Algeria

机译:遥感图像监督分类的可能性理论:以阿尔及利亚市区为例

获取原文
获取原文并翻译 | 示例

摘要

In this paper we present a possibilistic classifier of multispectral remotely sensed images. This classifier developed in the framework of possibility theory is based on a fusion process using several kinds of combination operators (conjunctive and disjunctive). Unlike the probabilistic classifier which can model only the data uncertainty through a probability measure, the possibilistic classifier has the ability to handle both uncertainty and imprecision of pixel classification through a possibility and a necessity measures. These two classifiers are applied to classify a multispectral image acquired on 2001 by ETM+ sensor of Landsat-7 satellite. This multi-band image covers a north-eastern part of Algiers (Algeria). Compared with probabilistic classifier, the possibilistic one is advantageous in reducing the error and confusion between the different classes. Indeed, the statistical assessment of possibilistic result indicates that the overall accuracy is improved from 72.72% to 90.23% and Kappa indicator increases from 0.62 to 0.86.
机译:在本文中,我们提出了一种多光谱遥感图像的可能分类器。在可能性理论框架内开发的该分类器基于使用多种组合算符(合取和析取)的融合过程。不同于概率分类器只能通过概率度量对数据不确定性进行建模,概率分类器具有通过可能性和必要性度量来处理像素分类的不确定性和不精确性的能力。这两个分类器用于分类2001年由Landsat-7卫星的ETM +传感器获取的多光谱图像。该多波段图像覆盖了阿尔及尔(阿尔及利亚)的东北部。与概率分类器相比,可能性分类器在减少不同类之间的错误和混乱方面具有优势。确实,对可能结果的统计评估表明,总体准确性从72.72%提高到90.23%,而Kappa指标从0.62提高到0.86。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号