【24h】

QUASI-3-D DYNAMIC MODEL OF AN INTERNALLY REFORMING PLANAR SOLID OXIDE FUEL CELL FOR HYDROGEN CO-PRODUCTION

机译:用于氢联产的内部重整型平面固体氧化物燃料电池的准3-D动态模型

获取原文
获取原文并翻译 | 示例

摘要

A simplified quasi-3-dimensional model of a solid oxide fuel cell (SOFC) is developed to investigate the dynamics of internal reformation in an SOFC. The dynamic model solves dynamic equations that govern relevant physical and chemical processes in a simplified geometric representation of a planar SOFC. This makes the model complex enough to resolve major performance characteristics and simple enough to be used in dynamic analyses and controls development at the system level. The model solves dynamic mass, momentum and energy conservation equations to provide local temperature, species concentrations, and current density distributions. These distributions are resolved in two dimensions across the cell, but each 2-D distribution resolves 5 separate control volumes through the nodal unit cell: the PEN; anode and cathode gas compartments; and interconnects. Internal reforming chemical kinetic expressions are included in the model formulation. Simulations show that extent of internal reformation impacts the dynamic temperature difference across the cell. Steady state maximum temperature differential across the cell can be reduced to about 100 K with 100% internal reformation and a cross-flow configuration. A full hydrogen co-production system was then modeled by integrating the SOFC model with heat exchangers, combustor, blower, and hydrogen collector. For conditions of a constant cathode exhaust temperature of 1273 K and lower fuel utilization (60% - 70%), the dominant thermal influence on the cell temperature was cooling by the endothermic reformation reactions. But at higher fuel utilization conditions, the dominant thermal influence was the convective cooling of the cathode gases. System simulations showed no tradeoff between power and H_2 production if the cathode exhaust temperature is held constant at 1273 K. High power and high H_2 production conditions were found to be synergistic: high hydrogen production leads to highrnelectrochemical efficiency and lower air flow rate leading to fewer parasitic losses. Dynamic SOFC responses to manipulation of fuel flow rate within the range of fuel utilization between 60 and 85% indicate that the system can be adequately controlled to produce various amounts of hydrogen and electricity.
机译:建立了固态氧化物燃料电池(SOFC)的简化准3维模型,以研究SOFC中内部重整的动力学。动态模型求解了以方程式SOFC的简化几何表示形式控制相关物理和化学过程的动力学方程。这使得模型足够复杂以解决主要性能特征,并且足够简单以用于系统级的动态分析和控制开发。该模型求解动态质量,动量和能量守恒方程,以提供局部温度,物质浓度和电流密度分布。这些分布在整个单元上以二维分解,但是每个2-D分布通过节点单位单元解析5个独立的控制体积:阳极和阴极气体室和互连。内部重整化学动力学表达式包括在模型配方中。仿真表明内部重整程度会影响整个电池的动态温差。借助100%的内部重整和错流配置,整个电池的稳态最大温差可降低至约100K。然后通过将SOFC模型与热交换器,燃烧器,鼓风机和氢气收集器集成在一起,对完整的氢气联产系统进行建模。对于恒定的1273 K阴极排气温度和较低的燃料利用率(60%-70%),对电池温度的主要热影响是通过吸热重整反应进行冷却。但是在较高的燃料利用率条件下,主要的热影响是阴极气体的对流冷却。系统仿真显示,如果阴极排气温度保持恒定在1273 K,则功率和H_2的生产之间就没有权衡。发现高功率和H_2的高生产条件具有协同作用:高氢产量导致高电化学效率和较低的空气流速导致更少的生产量寄生损失。在燃料利用率在60%到85%之间的范围内,动态SOFC对燃料流速的操纵的响应表明,可以充分控制该系统以产生各种量的氢气和电能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号