首页> 外文会议>The 41st IEEE International Conference on Plasma Science, and the 20th International Conference on High-Power Particle Beams >Optical control of electron trapping and acceleration in plasma channels: Application to tunable, pulsed sources of multi-color thomson gamma-rays
【24h】

Optical control of electron trapping and acceleration in plasma channels: Application to tunable, pulsed sources of multi-color thomson gamma-rays

机译:等离子体通道中电子俘获和加速的光学控制:应用于多色汤姆逊伽马射线的可调脉冲源

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Summary form only given. Reducing the size of a GeV-scale laser-plasma accelerator to a few millimeters requires maintaining an accelerating gradient as high as 10 GV/cm. This, in turn, dictates acceleration in the blowout regime in high-density plasmas (n ~10 cm). With current high-power laser technology, these highly dispersive plasmas are poorly suited as accelerating media. They transform the driving pulse into a relativistic optical shock long before electron dephasing, causing the plasma wake bucket (electron density bubble) to constantly expand and trap background electrons, degrading the beam quality [1, 2]. We show that this can be overcome using a high-bandwidth driver, with up to 400 nm initial bandwidth [2-4]. Introducing a large negative chirp (to compensate for the nonlinear frequency red-shift) and propagating the pulse in a plasma channel (to suppress diffraction of its leading edge) delays pulse self-steepening through electron dephasing and extends the dephasing length. As a result, continuous injection is suppressed, and electron energy is boosted to a GeV level [2, 4]. In addition, periodic self-injection in the channel may produce a sequence of background-free, quasi-monoenergetic bunches with a femtosecond-duration, controllable time delay and energy difference. The number of spectral components, their charge, energy, and energy separation can be controlled by varying the channel radius and length, whereas accumulation of the noise (viz. continuously injected charge) is prevented by the proper dispersion control of the driver via the negative chirp [4]. This level of control is hard to achieve with conventional accelerator techniques. Using the newly-developed relativistic 3D nonlinear Thomson scattering code [5], it is demonstrated that these clean, polychromatic beams can drive high-brightness, tunable, multi-color γ-ray sources.
机译:仅提供摘要表格。将GeV级激光等离子加速器的尺寸减小到几毫米,需要保持高达10 GV / cm的加速梯度。反过来,这决定了在高密度等离子体(n〜10 cm)中井喷状态下的加速度。利用当前的高功率激光技术,这些高度分散的等离子体不适合用作加速介质。他们在电子移相之前很久就将驱动脉冲转换为相对论性的光震,导致等离子体唤醒桶(电子密度气泡)不断膨胀并捕获背景电子,从而降低了电子束质量[1、2]。我们证明了可以使用高带宽驱动器克服这一问题,该驱动器具有高达400 nm的初始带宽[2-4]。引入大的负chi(以补偿非线性频率红移)并在等离子通道中传播脉冲(以抑制其前缘的衍射),会通过电子移相而延迟脉冲自加速,并延长移相长度。结果,抑制了连续注入,并且电子能量被提高到GeV能级[2,4]。此外,通道中的定期自我注入可能会产生一系列无背景,准单能束,这些束具有飞秒持续时间,可控时间延迟和能量差。可以通过更改通道半径和长度来控制频谱分量的数量,其电荷,能量和能量分离,而通过适当地控制驱动器的负向色散,可以防止噪声的累积(即连续注入电荷)。 rp [4]。用常规的加速器技术很难达到这种控制水平。使用新开发的相对论性3D非线性Thomson散射码[5],证明了这些干净的多色光束可以驱动高亮度,可调谐的多色γ射线源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号