首页> 外文会议>3rd social media mining for health applications workshop amp; shared task >Classification of medication-related tweets using stacked bidirectional LSTMs with context-aware attention
【24h】

Classification of medication-related tweets using stacked bidirectional LSTMs with context-aware attention

机译:使用堆叠式双向LSTM并结合上下文感知的注意事项对药物相关的推文进行分类

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the system that team UChicagoCompLx developed for the 2018 Social Media Mining for Health Applications (SMM4H) Shared Task. We use a variant of the Message-level Sentiment Analysis (MSA) model of (Baziotis et al., 2017), a word-level stacked bidirectional Long Short-Term Memory (LSTM) network equipped with attention, to classify medication-related tweets in the four subtasks of the SMM4H Shared Task. Without any subtask-specific tuning, the model is able to achieve competitive results across all subtasks. We make the datasets, model weights, and code publicly available.
机译:本文介绍了UChicagoCompLx团队为2018年健康应用社交媒体挖掘(SMM4H)共享任务开发的系统。我们使用(Baziotis等人,2017)的消息级别情感分析(MSA)模型的变体(单词级别的堆叠双向双向长期短期记忆(LSTM)网络,该网络具有注意力)来对与药物相关的推文进行分类在SMM4H共享任务的四个子任务中。无需任何特定于子任务的调整,该模型就可以在所有子任务上取得竞争性结果。我们公开提供数据集,模型权重和代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号