首页> 外文会议>3rd Asia-Pacific international conference on computational methods in engineering >A Direct Differentiation Boundary Integral Sensitivity Formulation of 3-D Acoustic Problems Oriented to FMBEM
【24h】

A Direct Differentiation Boundary Integral Sensitivity Formulation of 3-D Acoustic Problems Oriented to FMBEM

机译:面向FMBEM的3-D声学问题的直接微分边界积分灵敏度公式

获取原文
获取原文并翻译 | 示例

摘要

Analysis of acoustic sensitivity characteristics with respect to design variables is an important step of acoustic design and optimization processes. This paper presents a design sensitivity formulation of boundary integral equation for three-dimensional acoustic problems based on the direct differentiation method. The basic boundary integral equation is a linear combination of standard boundary integral equation and its normal derivative. This type of the boundary integral equation is used to avoid the divergent numerical results for fictitious eigen-frequencies observed for exterior problems [3]. The normal derivative of the standard boundary integral equation is a hyper-singular type, hence in the standard BEM, it is regularized by using the fundamental solution of Laplace's equation [1,2]. However, regularized boundary integral equation is not efficient for fast multipole BEM (FMBEM), because multipole expansion formulas and other translation formulas have to be implemented also for the fundamental solution of Laplace's equation. In this study, we derive a boundary integral sensitivity formula using the hypersingular type boundary Laplace's equation. In this study, we derive a boundary integral sensitivity formula using the hypersingular type boundary integral equation to use FMBEM for numerical analyses. Because the constant elements are assumed to be used in the numerical model, the collocation point can always be assumed to be placed on a smooth part of the boundary. The sound pressure at a point in the domain is given by an integral representation in the form, as follows:p(x)+lrq*(x,y).p(y)dΓ(y)=lrp*(x,y).q(y)dΓ(y) where p*(x,y)is the fundamental solution of three-dimensional Helmholtz equation, and q*(x,y)is itsnormal derivative.The differentiation of Eq. (1) with respect to an arbitrary design variable such as shape design parameter, frequency, mass density and impedance can be obtained by the direct differentiation method, as follows: p(x)+lrq*(x,y).p(y)dΓ(y)+lrq*(x,y).p(y)dΓ(y)+lrq*r (x,y).p(y)dΓ(y)=lrp*(x,y).q(y)dΓ(y)+lrp*(x,y).q(yr )dΓ(y)+lΓp*(x,y).q(y)dΓ(y)where upper dot(.)denotes differentiation with respect to the design variable.It is well-known that, without any care, the solution of an exterior acoustic problem is violated at the eigenfrequencies of the interior problem, when the boundary integral equation (BIE) method is applied to solve the problem directly. To deal with this problem, the Burton-Miller formulation using a linear combination of the boundary integral equation (BIE) and hypersingular BIE (HBIE) is used in this paper as follows, p(x)+lΓq*(x,y).p(y)dΓ(y)+a×lΓq(x,y).p(y)dΓ(y)=r lΓp(x,y).q(y)dΓ(y)+a×l×p(x,y).q(y)d×(y)a×q(x) where is a coupling constant that can be chosen as αi/k[7],k here is the wave number, and (~)denotes the derivative with respect to the normal at the collocation point x. Then, the differentiation of Eq.(3) with respect to a design variable gives p(x)+lΓq*(x,y).p(y)dΓ(y)+a×lΓq.(x,y).p(y)dΓ(y)r +lΓq*(x,y).p(y)dΓ(y)+a×lΓq.(x,y).p(y)dΓ(y)+lΓr q*(x,y).p(y)dΓ(y)+a×lΓq.(x,y).p(y)dΓ(y)=lΓp*(xr,y).q(y)dΓ(y)+a×lΓp*(x,y).q(y)dΓ(y)a×q(x)+lΓpr *(x,y).q(y)dΓ(y)a×lp*(x,y).q(y)dΓ(y)+lΓp*(x,y).r q(y)dΓ(y)+a×lΓp*(x,y).q(y)dΓ(y) By taking the limit of the internal point x of Eq.(4) to the boundary, we obtain the boundary integral equation which relates the sensitivity coefficients of the boundary sound pressure and the particle velocities.
机译:关于设计变量的声学灵敏度特性分析是声学设计和优化过程的重要步骤。本文提出了一种基于直接微分法的三维声学问题边界积分方程的设计灵敏度公式。基本边界积分方程是标准边界积分方程及其正态导数的线性组合。这种类型的边界积分方程用于避免针对外部问题观察到的虚构本征频率的数值结果[3]。标准边界积分方程的正态导数是超奇异类型,因此在标准BEM中,它是通过使用拉普拉斯方程的基本解[1,2]进行正则化的。但是,正则化边界积分方程对于快速多极BEM(FMBEM)效率不高,因为对于拉普拉斯方程的基本解也必须实现多极展开公式和其他转换公式。在这项研究中,我们使用超奇异型边界Laplace方程推导了边界积分灵敏度公式。在这项研究中,我们使用超奇异型边界积分方程式导出边界积分灵敏度公式,以使用FMBEM进行数值分析。因为假定常量元素将在数值模型中使用,所以可以始终假定并置点位于边界的平滑部分上。区域中某一点的声压由以下形式的积分表示形式给出:p(x)+ lrq *(x,y).p(y)dΓ(y)= lrp *(x,y q(y)dΓ(y),其中p *(x,y)是三维Helmholtz方程的基本解,q *(x,y)是其正态导数。 (1)对于任意设计变量,例如形状设计参数,频率,质量密度和阻抗,可以通过直接微分方法获得,如下所示:p(x)+ lrq *(x,y).p(y )dΓ(y)+ lrq *(x,y).p(y)dΓ(y)+ lrq * r(x,y).p(y)dΓ(y)= lrp *(x,y).q (y)dΓ(y)+ lrp *(x,y).q(yr)dΓ(y)+lΓp*(x,y).q(y)dΓ(y)其中上点(。)表示与众所周知,当使用边界积分方程(BIE)方法直接解决问题时,在内部问题的特征频率上,如果不加任何注意,就会违反外部声学问题的解决方案。为了解决这个问题,本文使用了边界积分方程(BIE)和超奇异BIE(HBIE)的线性组合的Burton-Miller公式,p(x)+lΓq*(x,y)。 p(y)dΓ(y)+ a×lΓq(x,y).p(y)dΓ(y)= rlΓp(x,y).q(y)dΓ(y)+ a×l×p( x,y).q(y)d×(y)a×q(x)其中,耦合常数可以选择为αi/ k [7],k是波数,(〜)表示在并置点x处相对于法线的导数。然后,式(3)相对于设计变量的微分给出p(x)+lΓq*(x,y).p(y)dΓ(y)+ a×lΓq。(x,y).p (y)dΓ(y)r +lΓq*(x,y).p(y)dΓ(y)+ a×lΓq。(x,y).p(y)dΓ(y)+lΓrq *(x ,y).p(y)dΓ(y)+ a×lΓq。(x,y).p(y)dΓ(y)=lΓp*(xr,y).q(y)dΓ(y)+ a ×lp *(x,y).q(y)dΓ(y)a×q(x)+lΓpr*(x,y).q(y)dΓ(y)a×lp *(x,y)。 q(y)dΓ(y)+lΓp*(x,y).rq(y)dΓ(y)+ a×lΓp*(x,y).q(y)dΓ(y)通过取式(4)的内点x到边界,我们得到了边界积分方程,该方程将边界声压的灵敏度系数与粒子速度联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号