首页> 外文学位 >A three-dimensional formulation for deriving the acoustic shape sensitivity using the boundary element method.
【24h】

A three-dimensional formulation for deriving the acoustic shape sensitivity using the boundary element method.

机译:使用边界元方法得出声学形状灵敏度的三维公式。

获取原文
获取原文并翻译 | 示例

摘要

The improvement of the acoustic behavior of complex systems has acquired great importance in the last decades. In various fields, there is a continuous need to reduce the level of radiated sound. Sensitivity information on how the radiated noise will be modified when a shape parameter of the system is modified can be utilized in determining design changes for noise reduction. The change of the sound level due to changes in the shape and geometry of the radiating object comprises the acoustic shape sensitivity and its analytical development and computational implementation are the main objectives of this Dissertation. The analytical development of the shape sensitivity equations may guide a shape optimization process without the requirement of remeshing the object as necessary in finite difference procedures.; The major contributions of this Dissertation are the analytical formulation, the numerical implementation and the validation of the shape sensitivity equations through analytical differentiation of the Helmholtz equation. The developments are validated by comparing numerical results to analytical solutions for both exterior and interior acoustic analyses.; The new developments are based on a three-dimensional direct boundary element formulation for solving and evaluating numerically the Helmholtz integral equation. The direct boundary element method is a two step process. First, the primary acoustic variables are computed on the surface of the boundary element model. Then, the acoustic response at any field point is evaluated. The computation of the acoustic shape sensitivity is also a two step process. First, the primary system of equations on the surface of the boundary element model is differentiated with respect to the shape design variables and is evaluated. Then, the Helmholtz integral equation for the acoustic response at a field point is differentiated with respect to the shape design variables. Validation of the developments is performed by comparing the numerical results with the analytical solutions for the noise radiated from a pulsating sphere and for a planar wave propagating inside a duct. Good agreement is observed in all validation analyses.
机译:在过去的几十年中,改善复杂系统的声学性能变得非常重要。在各个领域中,不断需要降低辐射声的水平。当修改系统的形状参数时,可以利用有关如何修改辐射噪声的灵敏度信息来确定用于降噪的设计变化。由于辐射物体的形状和几何形状的变化而引起的声级变化包括声学形状敏感性,其分析发展和计算实现是本论文的主要目的。形状敏感性方程的解析发展可以指导形状优化过程,而无需在有限差分程序中根据需要重新划分对象。本论文的主要贡献是通过亥姆霍兹方程的解析微分的解析公式,数值实现和形状敏感性方程的验证。通过将数值结果与用于外部和内部声学分析的分析解决方案进行比较,对开发进行了验证。新的进展是基于三维直接边界元公式,用于求解和数值计算亥姆霍兹积分方程。直接边界元方法是一个两步过程。首先,在边界元模型的表面上计算主要声学变量。然后,评估任何场点的声学响应。声学形状灵敏度的计算也是一个两步过程。首先,针对形状设计变量对边界元模型表面上的主要方程组进行微分并进行评估。然后,相对于形状设计变量微分用于场点处的声学响应的亥姆霍兹积分方程。通过将数值结果与从脉动球体辐射出的噪声以及在管道内部传播的平面波的解析解进行比较,可以对开发结果进行验证。在所有验证分析中均观察到良好的一致性。

著录项

  • 作者

    Sbragio, Ricardo.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Marine and Ocean.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2001
  • 页码 76 p.
  • 总页数 76
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号