首页> 外文会议>2nd workshop on representation learing for NLP 2017 >Combining Word-Level and Character-Level Representations for Relation Classification of Informal Text
【24h】

Combining Word-Level and Character-Level Representations for Relation Classification of Informal Text

机译:结合词级和字符级表示形式对非正式文本进行关系分类

获取原文
获取原文并翻译 | 示例

摘要

Word representation models have achieved great success in natural language processing tasks, such as relation classification. However, it does not always work on informal text, and the morphemes of some misspelling words may carry important short-distance semantic information. We propose a hybrid model, combining the merits of word-level and character-level representations to learn better representations on informal text. Experiments on two dataset of relation classification, SemEval-2010 Task8 and a large-scale one we compile from informal text, show that our model achieves a competitive result in the former and state-of-the-art with the other.
机译:单词表示模型在自然语言处理任务(例如关系分类)中取得了巨大的成功。但是,它并不总是适用于非正式文本,某些拼写错误的单词的词素可能会携带重要的短距离语义信息。我们提出了一种混合模型,结合了单词级和字符级表示的优点,以学习非正式文本的更好表示。对两个关系分类数据集(SemEval-2010 Task8)和我们从非正式文本中进行编译的大规模数据集进行的实验表明,我们的模型在前者和最新技术上均取得了竞争性结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号