【24h】

Adjusting Matching Algorithm to Adapt to Dynamic Subscriptions in Content-Based Publish/Subscribe Systems

机译:调整匹配算法以适应基于内容的发布/订阅系统中的动态订阅

获取原文
获取原文并翻译 | 示例

摘要

Content-based publish/subscribe systems enable on-demand event distribution based on users' interests. In dynamic environments, such as social networks and stock exchanges, the subscriptions that express users' interests update frequently, which changes the subscriptions' matchability which is defined as the matching probability of subscriptions with events. In the presence of dynamic subscriptions, it is challenging to maintain the performance stability of matching algorithms as the subscriptions' matchability is an important factor that impacts the performance of matching algorithms. So far, this issue has not been well addressed in the literature. In this paper, we design a matching algorithm that has the ability to adjust its behavior to adapt to dynamic subscriptions, aiming at stabilizing the performance of matching algorithms. To achieve this objective, a lightweight adjustment mechanism is proposed and adopted on a selected test bench, which gives rise to Maema, a matchability adaptive event matching algorithm. The effectiveness of Maema is extensively evaluated through a series of experiments using both synthetic and real-world data. Experiment results show that Maema not only possesses the beneficial adaptability, but also performs more efficiently.
机译:基于内容的发布/订阅系统可以根据用户的兴趣进行按需事件分发。在动态环境中,例如社交网络和证券交易所,表达用户兴趣的订阅会频繁更新,这会更改订阅的可匹配性,这被定义为订阅与事件的匹配概率。在动态订阅的情况下,维护匹配算法的性能稳定性是一项挑战,因为订阅的可匹配性是影响匹配算法性能的重要因素。到目前为止,这个问题在文献中还没有得到很好的解决。在本文中,我们设计了一种匹配算法,该算法具有调整其行为以适应动态订阅的能力,旨在稳定匹配算法的性能。为了达到这个目的,提出了一种轻量级的调节机制,并在选定的测试台上采用了这种机制,从而产生了Maema,一种可匹配的自适应事件匹配算法。通过使用合成数据和实际数据的一系列实验,对Maema的有效性进行了广泛的评估。实验结果表明,Maema不仅具有良好的适应性,而且性能更高。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号