首页> 外文会议>2018 IEEE International Conference on Cognitive Computing >Interest Recognition from Online Instant Messaging Sessions Using Text Segmentation and Document Embedding Techniques
【24h】

Interest Recognition from Online Instant Messaging Sessions Using Text Segmentation and Document Embedding Techniques

机译:使用文本分段和文档嵌入技术从在线即时消息会话中识别兴趣

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present techniques for recognizing users' interest from online instant messages for more timely and user-friendly targeted advertisement. We devise three text segmentation methods to identify blocks of utterances in an instant messaging session that resonate interests in certain products. We adapt document embedding technique for classifying a given text segment into a multi-level product category. We use over 50,000 product descriptions available on Groupon as training data and evaluate the effectiveness of our approaches based on the chat sessions that are simulated with dialogue from TV drama scripts.
机译:在本文中,我们提出了从在线即时消息中识别用户兴趣的技术,以便更及时,更友好地针对性广告。我们设计了三种文本分割方法来识别即时消息会话中引起某些产品兴趣的话语块。我们采用文档嵌入技术将给定的文本段分类为多级产品类别。我们使用Groupon上的50,000多种产品描述作为培训数据,并根据通过电视剧本脚本进行对话模拟的聊天会话评估我们方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号