首页> 外文会议>2018 55th ACM/ESDA/IEEE Design Automation Conference >Dynamic Management of Key States for Reinforcement Learning-assisted Garbage Collection to Reduce Long Tail Latency in SSD
【24h】

Dynamic Management of Key States for Reinforcement Learning-assisted Garbage Collection to Reduce Long Tail Latency in SSD

机译:增强学习辅助垃圾收集的关键状态的动态管理,以减少SSD中的长尾延迟

获取原文
获取原文并翻译 | 示例

摘要

Garbage collection (GC) is one of main causes of the long-tail latency problem in storage systems. Long-tail latency due to GC is more than 100 times greater than the average latency at the 99nthnpercentile. Therefore, due to such a long tail latency, real-time systems and quality-critical systems cannot meet the system requirements. In this study, we propose a novel key state management technique of reinforcement learning-assisted garbage collection. The purpose of this study is to dynamically manage key states from a significant number of state candidates. Dynamic management enables us to utilize suitable and frequently recurring key states at a small area cost since the full states do not have to be managed. The experimental results show that the proposed technique reduces by 22-25% the long-tail latency compared to a state-of-the-art scheme with real-world workloads.
机译:垃圾收集(GC)是存储系统中长尾延迟问题的主要原因之一。 GC导致的长尾延迟比99n 个百分位数。因此,由于拖尾延迟时间如此长,实时系统和质量至关重要的系统无法满足系统要求。在这项研究中,我们提出了一种新的强化学习辅助垃圾收集的关键状态管理技术。这项研究的目的是动态地管理来自大量候选状态的关键状态。动态管理使我们能够以较小的面积成本使用适当且频繁重复的关键状态,因为不必管理完整状态。实验结果表明,与具有实际工作负载的最新方案相比,所提出的技术将长尾延迟减少了22-25%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号