首页> 外文会议>2018 55th ACM/ESDA/IEEE Design Automation Conference >Reverse Engineering Convolutional Neural Networks Through Side-channel Information Leaks
【24h】

Reverse Engineering Convolutional Neural Networks Through Side-channel Information Leaks

机译:通过旁通道信息泄漏进行逆向工程卷积神经网络

获取原文
获取原文并翻译 | 示例

摘要

A convolutional neural network (CNN) model represents a crucial piece of intellectual property in many applications. Revealing its structure or weights would leak confidential information. In this paper we present novel reverse-engineering attacks on CNNs running on a hardware accelerator, where an adversary can feed inputs to the accelerator and observe the resulting off-chip memory accesses. Our study shows that even with data encryption, the adversary can infer the underlying network structure by exploiting the memory and timing side-channels. We further identify the information leakage on the values of weights when a CNN accelerator performs dynamic zero pruning for off-chip memory accesses. Overall, this work reveals the importance of hiding off-chip memory access pattern to truly protect confidential CNN models.
机译:卷积神经网络(CNN)模型在许多应用中代表着至关重要的知识产权。揭示其结构或权重将泄漏机密信息。在本文中,我们对在硬件加速器上运行的CNN提出了新颖的逆向工程攻击,攻击者可以在其中将输入提供给加速器,并观察由此产生的片外存储器访问。我们的研究表明,即使进行了数据加密,对手也可以通过利用内存和定时侧通道来推断潜在的网络结构。当CNN加速器对片外内存访问执行动态零修剪时,我们进一步确定权重值上的信息泄漏。总的来说,这项工作揭示了隐藏片外存储器访问模式对真正保护机密CNN模型的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号