首页> 外文会议>2018 52nd Asilomar Conference on Signals, Systems, and Computers >Why RELU Units Sometimes Die: Analysis of Single-Unit Error Backpropagation in Neural Networks
【24h】

Why RELU Units Sometimes Die: Analysis of Single-Unit Error Backpropagation in Neural Networks

机译:为什么RELU单元有时会死:神经网络中的单单元误差反向传播分析

获取原文
获取原文并翻译 | 示例

摘要

Recently, neural networks in machine learning use rectified linear units (ReLUs) in early processing layers for better performance. Training these structures sometimes results in “dying ReLU units” with near-zero outputs. We first explore this condition via simulation using the CIFAR-10 dataset and variants of two popular convolutive neural network architectures. Our explorations show that the output activation probability Pr[y > 0] is generally less than 0.5 at system convergence for layers that do not employ skip connections, and this activation probability tends to decrease as one progresses from input layer to output layer. Employing a simplified model of a single ReLU unit trained by a variant of error backpropagation, we then perform a statistical convergence analysis to explore the model's evolutionary behavior. Our analysis describes the potentially-slower convergence speeds of dying ReLU units, and this issue can occur regardless of how the weights are initialized.
机译:最近,机器学习中的神经网络在早期处理层中使用整流线性单位(ReLU),以获得更好的性能。训练这些结构有时会导致“濒死的ReLU单元”的输出接近于零。我们首先通过使用CIFAR-10数据集和两种流行的卷积神经网络体系结构的变体进行仿真来探索这种情况。我们的探索表明,对于不使用跳过连接的层,在系统收敛时,输出激活概率Pr [y> 0]通常小于0.5,并且随着从输入层到输出层的发展,该激活概率趋于降低。我们使用由错误反向传播的变体训练的单个ReLU单元的简化模型,然后执行统计收敛分析,以探索模型的演化行为。我们的分析描述了即将死去的ReLU单元的收敛速度可能会降低,并且无论如何初始化权重,都可能出现此问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号