首页> 外文会议>2017 Workshop of Computer Vision >Comparison Between Traditional Texture Methods and Deep Learning Descriptors for Detection of Nitrogen Deficiency in Maize Crops
【24h】

Comparison Between Traditional Texture Methods and Deep Learning Descriptors for Detection of Nitrogen Deficiency in Maize Crops

机译:传统纹理方法与深度学习描述符用于检测玉米作物中氮缺乏的比较

获取原文
获取原文并翻译 | 示例

摘要

Every year, efficient maize production is very important to the economy of many countries. Since nutritional deficiencies in maize plants are directly reflected in their grains productivity, early detection is needed to maximize the chances of proper recovery of these plants. Traditional texture methods recently showed interesting results in the identification of nutritional deficiencies. On the other hand, deep learning techniques are increasingly outperforming hand-crafted features on many tasks. In this paper, we propose a simple transfer learning approach from pre-trained cnn models and compare their results with those from traditional texture methods in the task of nitrogen deficiency identification. We perform experiments in a real-world dataset that contains digitalized images of maize leaves at different growth stages and with different levels of nitrogen fertilization. The results show that deep learning based descriptors achieve better success rates than traditional texture methods.
机译:每年,高效的玉米生产对许多国家的经济都非常重要。由于玉米植物的营养缺乏直接反映在其谷物的生产力上,因此需要尽早发现以最大程度地适当恢复这些植物。最近的传统质地方法在营养缺乏症的鉴定中显示出有趣的结果。另一方面,深度学习技术在许多任务上的表现越来越优于手工制作的功能。在本文中,我们提出了一种来自预训练的cnn模型的简单转移学习方法,并将其结果与传统纹理方法的结果进行氮缺乏识别的任务进行比较。我们在真实的数据集中执行实验,该数据集包含处于不同生长阶段和不同水平的氮肥水平的玉米叶片数字化图像。结果表明,基于深度学习的描述符比传统的纹理方法具有更高的成功率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号