首页> 外文会议>2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications >Rule-based data-driven approach for computer aided diagnosis of the peripheral zone prostate cancer from multiparametric MRI: Proof of concept
【24h】

Rule-based data-driven approach for computer aided diagnosis of the peripheral zone prostate cancer from multiparametric MRI: Proof of concept

机译:基于规则的数据驱动方法,可通过多参数MRI从计算机辅助诊断周围区域前列腺癌:概念验证

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a new unsupervised prostate cancer (PCa) localization algorithm for the peripheral zone (PZ), utilizing well-established rules used in clinical PCa diagnosis from mpMRI data. We perform clustering on ADC and DWI images accompanied by T2W examination of clustered regions and then combined with DCE findings. For each of the 10 analysed patients, we obtain a likelihood map showing suspicious areas. We evaluate our method by comparison against radiological MR tumor segmentations and delineations in histopathological whole-mount sections automatically registered to the MR, using voxel-wise ROC analysis. The resulting mean AUC values for our algorithm were 0.81 and 0.67 with radiological and histopathological ground truth, respectively, while the mean AUC for the radiological segmentation with the histopathological segmentation as the ground truth was 0.60. We conclude that the proposed approach can localize PZ PCa with good accuracy and could be used as an aid for radiologists.
机译:在本文中,我们利用来自mpMRI数据的临床PCa诊断中使用的公认规则,提出了一种针对外周带(PZ)的新的无监督前列腺癌(PCa)定位算法。我们在ADC和DWI图像上进行聚类,然后对聚类区域进行T2W检查,然后结合DCE发现。对于10位分析的患者中的每位患者,我们都获得了显示可疑区域的可能性图。我们通过使用体素ROC分析,通过与自动注册到MR的组织病理学整个切片中的放射MR肿瘤分割和轮廓进行比较,来评估我们的方法。对于放射学和组织病理学基础事实,我们算法得出的平均AUC值分别为0.81和0.67,而以组织病理学分割为基础事实的放射学分段的平均AUC为0.60。我们得出的结论是,所提出的方法可以对PZ PCa进行高精度定位,并且可以用作放射科医生的辅助工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号