首页> 外文会议>2017 Signal Processing: Algorithms, Architectures, Arrangements, and Applications >Non-fiducial based ECG biometric authentication using one-class Support Vector Machine
【24h】

Non-fiducial based ECG biometric authentication using one-class Support Vector Machine

机译:基于一类支持向量机的基于非基准的ECG生物特征认证

获取原文
获取原文并翻译 | 示例

摘要

Identity recognition encounters with several problems especially in feature extraction and pattern classification. Electrocardiogram (ECG) is a quasi-periodic signal which has highly discriminative characteristics in a population for subject recognition. The personal identity verification in a random population using kernel-based binary and one-class Support Vector Machines (SVMs) has been considered by other biometric traits, but has been so far left aside for analysis of ECG signals. This paper investigates the effect of different parameters of data set size, labeling data, configuration of training and testing data sets, feature extraction, different recording sessions, and random partition methods on accuracy and error rates of these SVM classifiers. The experiments were carried out with defining a number of scenarios on ECG data sets designed rely on feature extractors which were modeled based on an autocorrelation in conjunction with linear and nonlinear dimension reduction methods. The experimental results show that Kernel Principal Component Analysis has lower error rate in binary and one-class SVMs on random unknown ECG data sets. Moreover, one-class SVM can be robust recognition algorithm for ECG biometric verification if the sufficient number of biometric samples is available.
机译:身份识别遇到几个问题,特别是在特征提取和模式分类方面。心电图(ECG)是准周期信号,在人群中具有高度区分性,可用于对象识别。其他生物特征还考虑了使用基于内核的二进制和一类支持向量机(SVM)在随机种群中进行个人身份验证,但到目前为止,它还没有用于分析ECG信号。本文研究了数据集大小,标签数据,训练和测试数据集的配置,特征提取,不同的记录会话以及随机分区方法的不同参数对这些SVM分类器的准确性和错误率的影响。实验是在ECG数据集上定义了许多场景的基础上进行的,这些数据集是基于特征提取器设计的,这些特征提取器是基于自相关函数结合线性和非线性降维方法进行建模的。实验结果表明,在随机未知ECG数据集上,二进制和一类SVM的核主成分分析具有较低的错误率。此外,如果有足够数量的生物特征样本可用,则一类支持向量机可以是用于ECG生物特征验证的鲁棒识别算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号