首页> 外文会议>2017 International Conference on Inventive Computing and Informatics >Efficiency analysis of noise reduction algorithms: Analysis of the best algorithm of noise reduction from a set of algorithms
【24h】

Efficiency analysis of noise reduction algorithms: Analysis of the best algorithm of noise reduction from a set of algorithms

机译:降噪算法的效率分析:从一组算法中分析最佳降噪算法

获取原文
获取原文并翻译 | 示例

摘要

For greater advancement in future communication, efficient noise reduction algorithms with lesser complexity are a necessity. Noise in audio signal poses a great challenge in speech recognition, speech communication, speech enhancement and transmission. Hence the most efficient algorithm for noise reduction must be chosen in such a way that the cost for noise removal is a less as possible, but a large portion of noise is removed. The common method for the removal of noise is optimal linear filtering method, and some algorithms in this method are Wiener filtering, Kalman filtering and spectral subtraction technique. Here, the noise signal is passed through a filter or transformation. However, due to the complexity of these algorithms, there are better algorithms like Signal Dependent Rank Order Mean algorithm (SD-ROM), which removes noise from audio signals and retains the characteristics of the signal. The algorithm can be adjusted depending on the characteristics of noise signal too. To remove white Gaussian noise, discrete wavelet transform technique is used. After each of the techniques are applied to the samples, SNR and elapsed time are calculated. All of the above techniques show an increased Signal to Noise Ratio (SNR) after processing, as seen in the simulation results.
机译:为了在未来的通信中取得更大的进步,有必要以更低的复杂度来实现有效的降噪算法。音频信号中的噪声对语音识别,语音通信,语音增强和传输提出了巨大的挑战。因此,必须以减少噪声的成本尽可能少的方式选择最有效的降噪算法,但要去除大部分噪声。去除噪声的常用方法是最优线性滤波方法,该方法中的一些算法是维纳滤波,卡尔曼滤波和频谱减法技术。在此,噪声信号通过滤波器或变换。但是,由于这些算法的复杂性,因此有更好的算法,例如信号相关秩次均值算法(SD-ROM),它可以消除音频信号中的噪声并保留信号的特性。该算法也可以根据噪声信号的特性进行调整。为了消除白高斯噪声,使用了离散小波变换技术。将每种技术应用于样本后,便会计算出SNR和经过的时间。如仿真结果所示,所有上述技术在处理后均显示出更高的信噪比(SNR)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号