首页> 外文会议>2017 International Conference on Computing Networking and Informatics >Genetic algorithm based feature selection and MOE Fuzzy classification algorithm on Pima Indians Diabetes dataset
【24h】

Genetic algorithm based feature selection and MOE Fuzzy classification algorithm on Pima Indians Diabetes dataset

机译:基于遗传算法的比马印第安人糖尿病数据集特征选择和MOE模糊分类算法

获取原文
获取原文并翻译 | 示例

摘要

Diabetes Mellitus is a dreadful disease characterized by increased levels of glucose in the blood, termed as the condition of hyperglycemia. As this disease is prominent among the tropical countries like India, an intense research is being carried out to deliver a machine learning model that could learn from previous patient records in order to deliver smart diagnosis. This research work aims to improve the accuracy of existing diagnostic methods for the prediction of Type 2 Diabetes with machine learning algorithms. The proposed algorithm selects the essential features from the Pima Indians Diabetes Dataset with Goldberg's Genetic algorithm in the pre-processing stage and a Multi Objective Evolutionary Fuzzy Classifier is applied on the dataset. This algorithm works on the principle of maximum classifier rate and minimum rules. As a result of feature selection with GA the number of features is reduced to 4 from 8 and the classifier rate is improved to 83.0435 % with NSGA II in training rate of 70% and 30% testing.
机译:糖尿病是一种可怕的疾病,其特征在于血液中葡萄糖水平升高,被称为高血糖症。由于这种疾病在像印度这样的热带国家中很显着,因此正在进行大量研究以提供一种机器学习模型,该模型可以从以前的患者记录中学习,以便进行智能诊断。这项研究工作旨在提高使用机器学习算法预测2型糖尿病的现有诊断方法的准确性。所提出的算法在预处理阶段使用Goldberg遗传算法从Pima印第安人糖尿病数据集中选择基本特征,并对数据集应用多目标进化模糊分类器。该算法基于最大分类器率和最小规则的原理工作。使用GA进行特征选择的结果是,在训练率分别为70%和30%的情况下,使用NSGA II可以将特征数量从8个减少到4个,并将分类率提高到83.0435%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号