【24h】

An optimal method for charging station location based on big data of the SOC and immune algorithm

机译:基于SOC大数据和免疫算法的充电站选址优化方法

获取原文
获取原文并翻译 | 示例

摘要

Estimation of the state of charge (SOC) of the battery management system (BMS) is vital for an electric vehicle (EV). Higher accuracy of SOC estimation increases the accuracy of the mileage calculation. When drivers view the remaining mileage based on SOC of the BMS, they can choose a convenient charging station to charge the EV; location of a suitable charging station is very important for an electrical vehicle. This paper introduces a dynamic optimization model based on mobile cloud and crowd-sensing data that collects the real time BMS of the EV; we present an immune algorithm for analysis and processing of these data to determine the locality of an optimal charging station. Simulation results show that this method is more efficient than the traditional model for charging stations.
机译:电池管理系统(BMS)的充电状态(SOC)估计对于电动汽车(EV)至关重要。 SOC估算的更高准确性会提高里程计算的准确性。当驾驶员基于BMS的SOC查看剩余里程时,他们可以选择便利的充电站为EV充电;对于电动汽车而言,合适的充电站的位置非常重要。本文介绍了一种基于移动云和人群感知数据的动态优化模型,该模型收集了电动汽车的实时BMS。我们提出了一种免疫算法来分析和处理这些数据,以确定最佳充电站的位置。仿真结果表明,该方法比传统的充电站模型更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号