首页> 外文会议>2017 IEEE Automatic Speech Recognition and Understanding Workshop >Semi-supervised training strategies for deep neural networks
【24h】

Semi-supervised training strategies for deep neural networks

机译:深度神经网络的半监督训练策略

获取原文
获取原文并翻译 | 示例

摘要

Use of both manually and automatically labelled data for model training is referred to as semi-supervised training. While semi-supervised acoustic model training has been well-explored in the context of hidden Markov Gaussian mixture models (HMM-GMMs), the re-emergence of deep neural network (DNN) acoustic models has given rise to some novel approaches to semi-supervised DNN training. This paper investigates several different strategies for semi-supervised DNN training, including the so-called `shared hidden layer' approach and the `knowledge distillation' (or student-teacher) approach. Particular attention is paid to the differing behaviour of semi-supervised DNN training methods during the cross-entropy and sequence training phases of model building. Experimental results on our internal study dataset provide evidence that in a low-resource scenario the most effective semi-supervised training strategy is `naive CE' (treating manually transcribed and automatically transcribed data identically during the cross entropy phase of training) followed by use of a shared hidden layer technique during sequence training.
机译:将手动和自动标记的数据都用于模型训练称为半监督训练。虽然在隐马尔可夫高斯混合模型(HMM-GMMs)的背景下对半监督声学模型训练进行了很好的探索,但深层神经网络(DNN)声学模型的重新出现引起了一些新颖的半声学方法监督DNN培训。本文研究了半监督DNN训练的几种不同策略,包括所谓的“共享隐藏层”方法和“知识蒸馏”(或学生-老师)方法。在模型构建的交叉熵和序列训练阶段,应特别注意半监督DNN训练方法的不同行为。我们内部研究数据集上的实验结果提供了证据,即在资源匮乏的情况下,最有效的半监督训练策略是“天真CE”(在训练的交叉熵阶段对手动转录的数据和自动转录的数据进行相同的处理),然后再使用序列训练中的共享隐藏层技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号