首页> 外文会议>2017 IEEE Automatic Speech Recognition and Understanding Workshop >Dynamic time-aware attention to speaker roles and contexts for spoken language understanding
【24h】

Dynamic time-aware attention to speaker roles and contexts for spoken language understanding

机译:对讲者角色和上下文的动态时间感知注意力,以帮助他们理解口语

获取原文
获取原文并翻译 | 示例

摘要

Spoken language understanding (SLU) is an essential component in conversational systems. Most SLU component treats each utterance independently, and then the following components aggregate the multi-turn information in the separate phases. In order to avoid error propagation and effectively utilize contexts, prior work leveraged history for contextual SLU. However, the previous model only paid attention to the content in history utterances without considering their temporal information and speaker roles. In the dialogues, the most recent utterances should be more important than the least recent ones. Furthermore, users usually pay attention to 1) self history for reasoning and 2) others utterances for listening, the speaker of the utterances may provides informative cues to help understanding. Therefore, this paper proposes an attention-based network that additionally leverages temporal information and speaker role for better SLU, where the attention to contexts and speaker roles can be automatically learned in an end-to-end manner. The experiments on the benchmark Dialogue State Tracking Challenge 4 (DSTC4) dataset show that the time-aware dynamic role attention networks significantly improve the understanding performance.
机译:口语理解(SLU)是会话系统中的重要组成部分。大多数SLU组件独立地处理每个发声,然后以下组件在单独的阶段汇总多匝信息。为了避免错误传播并有效利用上下文,以前的工作将历史记录用于上下文SLU。但是,以前的模型只关注历史话语中的内容,而没有考虑它们的时间信息和说话者角色。在对话中,最近的发言应比最近的发言更为重要。此外,用户通常会注意1)自己的历史进行推理,以及2)其他话语用于聆听,话语的提供者可能会提供有益的信息以帮助理解。因此,本文提出了一种基于注意力的网络,该网络另外利用时间信息和说话者角色来获得更好的SLU,可以自动以端到端的方式学习对上下文和说话者角色的关注。对基准对话状态跟踪挑战4(DSTC4)数据集的实验表明,时间感知的动态角色注意网络可以显着提高理解性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号