【24h】

Face recognition based on ICA and SPSO-ELM

机译:基于ICA和SPSO-ELM的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

According to the poor robustness of the extreme learning machine as a classifier for human face recognition, a swarm optimization algorithm is proposed. The algorithm combines principle component analysis and independent component analysis to extract human face features, and extreme learning machine is used as a classifier. In order to improve the classification performance of extreme learning machine and achieve higher recognition accuracy and better robustness, the swarm optimization algorithm is introduced in the classification stage. The experimental results show that compared with the traditional algorithm, the human face recognition system using the improved algorithm not only improves the face recognition rata but also reduces the influence on the result of training data when the numbers of the hidden layer nodes change, and has good robustness, has a great promotional value in similar classification model.
机译:针对极端学习机作为人脸识别的分类器鲁棒性差的问题,提出了一种群体优化算法。该算法结合了主成分分析和独立成分分析来提取人脸特征,并以极限学习机作为分类器。为了提高极限学习机的分类性能,提高识别精度和鲁棒性,在分类阶段引入了群体优化算法。实验结果表明,与传统算法相比,采用改进算法的人脸识别系统不仅提高了人脸识别率,而且减小了隐藏层节点数变化时对训练数据结果的影响。良好的鲁棒性,在类似的分类模型中具有很大的推广价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号