【24h】

Credit Risk Analysis in Peer-to-Peer Lending System

机译:点对点贷款系统中的信用风险分析

获取原文
获取原文并翻译 | 示例

摘要

This research paper aims to analyze the credit risk involved in peer-to-peer (P2P) lending system of “LendingClub” Company. The P2P system allows investors to get significantly higher return on investment as compared to bank deposit, but it comes with a risk of the loan and interest not being repaid. Ensemble machine learning algorithms and preprocessing techniques are used to explore, analyze and determine the factors which play crucial role in predicting the credit risk involved in “LendingClub” publicly available 2013-2015 loan applications dataset. A loan is considered “good” if it's repaid with interest and on time. The algorithms are optimized to favor the potential good loans whilst identifying defaults or risky credits.
机译:本研究旨在分析“ LendingClub”公司的P2P借贷系统中涉及的信用风险。与银行存款相比,P2P系统使投资者可以获得更高的投资回报率,但存在贷款和利息无法偿还的风险。集成机器学习算法和预处理技术用于探索,分析和确定在预测“ LendingClub”公开可用的2013-2015贷款申请数据集所涉及的信用风险中起关键作用的因素。如果一笔贷款能够按时偿还,则被认为是“良好”贷款。这些算法经过优化,可以在识别违约或风险信用时支持潜在的良好贷款。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号