【24h】

Stochastic Self-Organisation of Poorly Structured Data and Memory Realisation in an Information Domain When Designing News Events Forecasting Models

机译:设计新闻事件预测模型时,结构不良的数据的随机自组织和信息域中的内存实现

获取原文
获取原文并翻译 | 示例

摘要

The paper expands on the elaborated model of forecasting news events basing on the stochastic dynamics of news clusters variance and memory-based realisation in an information domain with self-organizing poorly structured data. The provided analysis of stochastic dynamics in overcoming the news events threshold shows the transition probability appearing right after the process of changing the news clusters dimensions and structure begins. The allowances for the second time derivative in the differential model of information process enable accounting for the memory of the previous states of the information system and the possibility to describe the system's considerable self-organisation. Basing on the developed model, the authors have designed an algorithm of analysing the interrelations of news clusters in the information domain with a probability for a forecast event happening, and defining a possible time of its occurrence.
机译:本文扩展了详细的新闻事件预测模型,该模型基于新闻集群方差的随机动态和具有自组织结构不良数据的信息域中基于内存的实现。提供的克服新闻事件阈值的随机动力学分析显示,转变概率在新闻集群尺寸和结构的更改过程开始后立即出现。在信息过程的微分模型中,对第二时间导数的余量允许考虑信息系统以前状态的存储,以及描述系统相当大的自组织的可能性。基于开发的模型,作者设计了一种算法,用于分析信息领域中新闻集群的相互关系以及发生预测事件的可能性,并定义其发生的可能时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号