【24h】

Hybrid Backtracking Search Optimization Algorithm and K-Means for Clustering in Wireless Sensor Networks

机译:无线传感器网络中用于群集的混合回溯搜索优化算法和K均值

获取原文
获取原文并翻译 | 示例

摘要

Rapid technology evolvement in the area of wireless sensor networks (WSNs) has led to many application-specific protocols that are particularly developed to cover different fields of usage and various network scenarios. Energy efficiency is one of the apparent challenges facing WSNs which has impacted immensely on the network performance. Hence, clustering protocols that eliminate energy inefficiencies in the network is essential. As finding an optimal set of cluster heads is an NP-hard problem, the application of heuristic algorithm is required to produce good clustering. In this paper, we propose a clustering solution for WSNs using a hybrid algorithm based on Backtracking Search Optimization Algorithm (BSA) and K-Means. A fitness function that incorporates aspects such as expected energy consumption in the network and maximum intra-cluster distance is utilized to address the problem of energy efficiency. Performance comparison against well-known clustering protocols such as LEACH and LEACH-C reveals that the hybrid of BSA and K-Means clustering algorithm is able to deliver more data to the base station and extends the network lifetime.
机译:无线传感器网络(WSN)领域中技术的飞速发展导致许多特定于应用程序的协议,这些协议经过专门开发以涵盖不同的使用领域和各种网络方案。能源效率是WSN面临的明显挑战之一,它对网络性能产生了巨大影响。因此,消除网络能源效率低下的群集协议至关重要。由于找到最佳的簇头集合是一个NP难题,因此需要使用启发式算法来产生良好的聚类。在本文中,我们提出了一种使用基于回溯搜索优化算法(BSA)和K-Means的混合算法的WSN聚类解决方案。结合诸如网络中的预期能耗和最大群集内距离等方面的适应性功能可用于解决能源效率问题。与著名的群集协议(如LEACH和LEACH-C)的性能比较表明,BSA和K-Means群集算法的混合能够向基站提供更多数据,并延长网络寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号