首页> 外文会议>2016 Annual Meeting of the North American Fuzzy Information Processing Society >Generating ternary stock trading signals using fuzzy genetic network programming
【24h】

Generating ternary stock trading signals using fuzzy genetic network programming

机译:使用模糊遗传网络编程生成三元股票交易信号

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an expert system is developed using fuzzy genetic network programming with reinforcement learning (GNP-RL) in order to generate stock trading signals based on technical indices of the stock prices. In order to increase the accuracy and reliability of results, we applied Wavelet Transform to eliminate noises and irregularities in prices. Since choosing the most appropriate wavelet base is an important decision, the Energy to Shannon Entropy Ratio, as an objective method, is used in order to address this concern. For developing this system, we applied fuzzy node transition and decision making in both processing and judgment nodes of GNP-RL. Consequently, using these method not only did increase the accuracy of node transition and decision making in GNP's nodes, but also extended the GNP's binary signals to ternary trading signals. In other words, in our proposed Fuzzy GNP-RL model, a No Trade signal is added to conventional Buy or Sell signals. The proposed model has been used to generate trading signals for ten companies listed in Tehran Stock Exchange (TSE). The simulation results in testing time period shows that the developed system has more favorable performance in comparison with the simple GNP-RL with binary signals and Buy and Hold strategy.
机译:在本文中,使用带有增强学习的模糊遗传网络编程(GNP-RL)开发了一个专家系统,以便基于股票价格的技术指标生成股票交易信号。为了提高结果的准确性和可靠性,我们应用了小波变换来消除价格中的噪声和不规则性。由于选择最合适的小波基是一个重要的决定,因此使用能量与香农熵之比作为一种客观方法来解决这一问题。为了开发该系统,我们在GNP-RL的处理和判断节点中都应用了模糊节点转换和决策。因此,使用这些方法不仅可以提高GNP节点中节点转换和决策的准确性,而且可以将GNP的二进制信号扩展为三元交易信号。换句话说,在我们提出的模糊GNP-RL模型中,将“无交易”信号添加到常规的“买入或卖出”信号中。提议的模型已用于为在德黑兰证券交易所(TSE)上市的十家公司生成交易信号。测试期间的仿真结果表明,与具有二进制信号和购买和持有策略的简单GNP-RL相比,开发的系统具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号