首页> 外文会议>2015 Picture Coding Symposium >A highly parallel motion estimation method based on temporal motion vector prediction for a many-core platform
【24h】

A highly parallel motion estimation method based on temporal motion vector prediction for a many-core platform

机译:基于时间运动矢量预测的多核平台高度并行运动估计方法

获取原文
获取原文并翻译 | 示例

摘要

In hybrid video coding such as H.264/AVC and H.265/HEVC using motion compensation, most coding processes are mainly used for motion estimation. Recently, highly parallel processing devices such as graphics processing units (GPUs) or many-core processors have been utilized to accelerate motion estimation. Although a straightforward way to parallelize motion estimation is block-based parallelization within a frame, motion information of the neighboring block is not available so coding efficiency loss is inevitable. A method using motion vectors of coded frames has been proposed to tackle this problem; however, it causes a decrease in the precision of motion vector predictions in a hierarchical reference structure. This paper proposes a temporal motion vector prediction-based, highly parallel motion estimation method that is applicable to a hierarchical reference structure. It utilizes motion vectors of non-encoded frames referring to the same reference frame of an encoding frame and a block size decision and a concatenation of motion vectors to improve the estimation accuracy. Experiments show that the proposed method achieves up to 9.2% rate-distortion improvement over the conventional method with the similar encoding speed improvement over HM.
机译:在使用运动补偿的诸如H.264 / AVC和H.265 / HEVC的混合视频编码中,大多数编码过程主要用于运动估计。最近,诸如图形处理单元(GPU)或多核处理器之类的高度并行处理设备已被用于加速运动估计。尽管使运动估计并行化的直接方法是在一帧内基于块的并行化,但是相邻块的运动信息不可用,因此编码效率的损失是不可避免的。已经提出了一种使用编码帧的运动矢量的方法来解决这个问题。然而,这导致分层参考结构中运动矢量预测的精度降低。本文提出了一种基于时间运动矢量预测的高度并行运动估计方法,该方法适用于分层参考结构。它利用参考编码帧的相同参考帧的非编码帧的运动矢量和块大小判定以及运动矢量的级联来提高估计精度。实验表明,与传统方法相比,所提方法的编码率提高了9.2%,与传统方法相比提高了9.2%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号