首页> 外文会议>2015 International Conference on Control, Communication amp; Computing India >Rare and frequent weighted itemset optimization using homologous transactions: A rule mining approach
【24h】

Rare and frequent weighted itemset optimization using homologous transactions: A rule mining approach

机译:使用同源交易的稀有和频繁加权项目集优化:规则挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

The method proposed in this paper deals with weighted itemsets and it considers both frequent and rare itemset mining using Homologous Transactions through the Frequent Pattern Growth Paradigm. Apart from the traditional methods for mining, this method mines out items considering the local interestingness in each of the transactions. Along with the minimum and maximum function, this paper also introduces the average weighting function too to generate the Homologous Transactions. Since average function is used, it is possible to maintain a mid level range of weights, not very high or low. The use of FP-Growth increases the execution time, when compared to Apriori. Two algorithms called, FWIHT (Frequent Weighted Itemset mining using Homologous Transaction) and RWIHT (Rare Weighted Itemset mining using Homologous Transaction), which extract frequent and rare items using homologous transaction are proposed. As an extension, a rule mining task is also done by constructing a matrix instead of FP-Tree and using a measure called cogency. Experimental results prove that the method is more efficient than other mining methods.
机译:本文提出的方法处理加权项目集,并通过“频繁模式增长范式”考虑使用同源事务的频繁项目集和稀有项目集挖掘。除了传统的挖掘方法外,该方法还考虑到每个交易中的本地趣味性来挖掘项目。除了最小和最大函数外,本文还介绍了平均加权函数以生成同源交易。由于使用了平均功能,因此可以将权重保持在中等水平,而不是很高或很低。与Apriori相比,FP-Growth的使用增加了执行时间。提出了两种算法:FWIHT(使用同源交易的频繁加权项目集挖掘)和RWIHT(使用同源交易的罕见加权项目集挖掘),它们通过同源交易提取频繁和稀有项目。作为扩展,规则挖掘任务也可以通过构造矩阵而不是FP-Tree并使用一种称为cogency的度量来完成。实验结果证明,该方法比其他挖掘方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号