首页> 外文会议>2015 International Conference on Computers, Communications, and Systems >A mirror neuron based neural network for website classification
【24h】

A mirror neuron based neural network for website classification

机译:基于镜像神经元的神经网络用于网站分类

获取原文
获取原文并翻译 | 示例

摘要

Mirror neurons become responsive whenever an animal performs a peculiar action or when it observes a certain action being performed. The discovery of these neurons in humans has explained quite a lot of our behaviour patterns. The decoding logic of these neurons forms the vital component to the proposed neural network in this paper. The backdrop to the central idea of mirror neurons is the notion that people's behaviour tends to effect the way in which they browse the web. Using these ideas a neural network can be built based on the working of mirror neurons which can play a vital role in classifying websites into categories. DMOZ provides an open directory of websites and using this large database as a training set, the neural network is trained. The neural network is then subjected to websites that are not listed in DMOZ and are classified based on their mirroring percentage. The decoding principles of mirror neurons are discussed and their role in the foundation for the design of the neural network is explained in detail. The results obtained can be used to effectively classify new websites into one of the DMOZ categories.
机译:每当动物执行特殊动作或观察到正在执行的特定动作时,镜像神经元就会做出响应。在人类中发现这些神经元已经解释了我们许多行为模式。这些神经元的解码逻辑构成了本文提出的神经网络的重要组成部分。镜像神经元的中心思想的背景是人们的行为倾向于影响他们浏览网络的方式这一观念。利用这些思想,可以基于镜像神经元的工作来构建神经网络,这可以在将网站分类中发挥至关重要的作用。 DMOZ提供了一个开放的网站目录,并使用这个大型数据库作为训练集,对神经网络进行了训练。然后,将神经网络置于DMOZ中未列出的网站,并根据其镜像百分比对其进行分类。讨论了镜像神经元的解码原理,并详细说明了它们在神经网络设计基础中的作用。获得的结果可用于将新网站有效地分类为DMOZ类别之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号