【24h】

An effective method on content based music feature extraction

机译:一种基于内容的音乐特征提取的有效方法

获取原文
获取原文并翻译 | 示例

摘要

Based on the theories of frequency domain and time domain signal processing, wavelet analysis, and singular value decomposition (SVD), an effective method for content based music feature extraction is proposed in this paper. Music feature can be divided into three parts by this method, which are frequency feature, auditory perceptual feature, and statistical characteristic of beat. The characteristic of each music can be well described by these features. The results of logistic regression classification model and linear support vector machine (SVM) classification model which is on a data set consists of several different styles of music and use the feature extraction method in this paper show the high precision of 95.33% in average, and also prove the effectiveness of the proposed method. Feature extraction is the foundation of content based recommendation, retrieval, classification, and cluster. Hence this method has good prospect in these area.
机译:基于频域和时域信号处理,小波分析和奇异值分解(SVD)的理论,提出了一种有效的基于内容的音乐特征提取方法。该方法可以将音乐特征分为频率特征,听觉感知特征和拍子的统计特征三部分。这些功能可以很好地描述每种音乐的特征。在由几种不同风格的音乐组成的数据集上进行逻辑回归分类模型和线性支持向量机(SVM)分类模型的结果,使用本文中的特征提取方法显示出平均95.33%的高精度,并且也证明了该方法的有效性。特征提取是基于内容的推荐,检索,分类和聚类的基础。因此,该方法在这些领域具有良好的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号