【24h】

Imbalanced Data Classification Based on a Hybrid Resampling SVM Method

机译:基于混合重采样SVM方法的不平衡数据分类

获取原文
获取原文并翻译 | 示例

摘要

Imbalanced datasets are frequently founded in many different applications, causing poor predication performances for minority class. In the paper, a hybrid re-sampling approach was proposed to deal with the two-class imbalanced data classification. Firstly, SMOTE technique is used to generate synthetic points for the minority class, then, under-sampling technique was used to delete some samples of the majority with less classified information. Thus, relative balanced training datasets are generated and we use SVM to cope with the new dataset. Experimental results on a synthetic dataset and five benchmark UCI datasets are provided to show the effectiveness of the proposed method.
机译:失衡的数据集经常建立在许多不同的应用程序中,导致少数族裔的预测性能不佳。本文提出了一种混合重采样方法来处理两类不平衡数据分类。首先,使用SMOTE技术为少数群体生成综合点,然后,使用欠采样技术删除分类信息较少的多数样本。因此,生成了相对平衡的训练数据集,并且我们使用SVM来应对新的数据集。提供了一个综合数据集和五个基准UCI数据集的实验结果,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号