首页> 外文会议>2014 IEEE Workshop on Statistical Signal Processing >Gaussian mixture models with class-dependent features for speech emotion recognition
【24h】

Gaussian mixture models with class-dependent features for speech emotion recognition

机译:具有类相关特征的高斯混合模型用于语音情感识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose models for emotion recognition from speech based on class-dependent features and Gaussian mixture models (GMM). Seven emotions are identified (Happiness, Fear, Neutral, Disgust, Anger, Boredom and Sadness) with a small set of features for each class. Results show that our system outperforms the single-stage classifier, with a 82.41% (74.86% in single-stage) overall recognition rate for the male case and 81.28% (71.82% in single-stage) for the female case.
机译:在本文中,我们提出了基于类的特征和高斯混合模型(GMM)的语音情感识别模型。识别出七个情感(幸福,恐惧,中立,厌恶,愤怒,无聊和悲伤),每个班级都有少量特征。结果表明,我们的系统优于单阶段分类器,男性案例的总体识别率为82.41%(单阶段为74.86%),女性案例的整体识别率为81.28%(单阶段为71.82%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号