首页> 外文会议>2014 IEEE Workshop on Statistical Signal Processing >Sequential Monte Carlo samplers for marginal likelihood computation in multiplicative exponential noise models
【24h】

Sequential Monte Carlo samplers for marginal likelihood computation in multiplicative exponential noise models

机译:顺序蒙特卡洛采样器,用于乘法指数噪声模型中的边际似然计算

获取原文
获取原文并翻译 | 示例

摘要

Model scoring in latent factor models is essential for a broad spectrum of applications such as clustering, change point detection or model order estimation. In a Bayesian setting, model selection is achieved via computation of the marginal likelihood. However, this is a typically challenging task as it involves calculation of a multidimensional integral over all the latent variables. In this paper, we consider approximate computation of the conditional marginal likelihood in a multiplicative exponential noise model, which is the generative model for latent factor models with the Itakura-Saito divergence such as the Nonnegative Matrix Factorization (NMF). We show that standard approaches are not accurate and propose two new methods in the sequential Monte Carlo (SMC) samplers framework. We explore the performances of these estimators on two problems.
机译:潜在因素模型中的模型评分对于诸如聚类,变化点检测或模型阶数估计等广泛应用至关重要。在贝叶斯环境中,模型选择是通过计算边际似然来实现的。但是,这是一项通常具有挑战性的任务,因为它涉及对所有潜在变量的多维积分的计算。在本文中,我们考虑了乘法指数噪声模型中条件边际似然的近似计算,该模型是具有Itakura-Saito散度的潜在因子模型(如非负矩阵分解)的生成模型。我们证明标准方法并不准确,并在顺序蒙特卡洛(SMC)采样器框架中提出了两种新方法。我们针对两个问题探索这些估计量的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号