首页> 外文会议>2014 IEEE Workshop on Statistical Signal Processing >Robust iteratively reweighted Lasso for sparse tensor factorizations
【24h】

Robust iteratively reweighted Lasso for sparse tensor factorizations

机译:用于稀疏张量分解的鲁棒迭代加权Lasso

获取原文
获取原文并翻译 | 示例

摘要

A new tensor approximation method is developed based on the CANDECOMP/PARAFAC (CP) factorization that enjoys both sparsity (i.e., yielding factor matrices with some nonzero elements) and resistance to outliers and non-Gaussian measurement noise. This method utilizes a robust bounded loss function for errors in the low-rank tensor approximation while encouraging sparsity with Lasso (or ℓ1-) regularization to the factor matrices (of a tensor data). A simple alternating, iteratively reweighted (IRW) Lasso algorithm is proposed to solve the resulting optimization problem. Simulation studies illustrate that the proposed method provides excellent performance in terms of mean square error accuracy for heavy-tailed noise conditions, with relatively small loss in conventional Gaussian noise.
机译:在CANDECOMP / PARAFAC(CP)分解的基础上开发了一种新的张量逼近方法,该方法既具有稀疏性(即具有一些非零元素的屈服因子矩阵),又具有对异常值和非高斯测量噪声的抵抗力。该方法利用鲁棒的有界损失函数来处理低秩张量逼近中的误差,同时通过对(张量数据的)因子矩阵进行Lasso(或ℓ1-)正则化来促进稀疏性。提出了一种简单的交替迭代加权(IRW)Lasso算法来解决由此产生的优化问题。仿真研究表明,对于重尾噪声条件,该方法在均方误差精度方面具有出色的性能,而传统高斯噪声的损失相对较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号