首页> 外文会议>2014 IEEE Workshop on Electronics, Computer and Applications >Determination of boiling range of xylene mixed in PX device using Artificial Neural Networks
【24h】

Determination of boiling range of xylene mixed in PX device using Artificial Neural Networks

机译:用人工神经网络测定PX装置中混合二甲苯的沸程。

获取原文
获取原文并翻译 | 示例

摘要

Determination of boiling range of xylene mixed in PX device is currently a crucial topic in the practical applications because of the recent disputes of PX project in China. In our study, instead of determining the boiling range of xylene mixed by traditional approach in laboratory or industry, we successfully established two Artificial Neural Networks (ANNs) models to determine the initial boiling point and final boiling point respectively. Results show that the Multilayer Feedforward Neural Networks (MLFN) model with 7 nodes (MLFN-7) is the best model to determine the initial boiling point of xylene mixed, with the RMS error 0.18; while the MLFN model with 4 nodes (MLFN-4) is the best model to determine the final boiling point of xylene mixed, with the RMS error 0.75. The training and testing processes both indicate that the models we developed are robust and precise. Our research can effectively avoid the damage of the PX device to human body and environment.
机译:由于中国PX项目的近期争议,确定PX装置中混合的二甲苯的沸程目前是实际应用中的关键课题。在我们的研究中,我们没有建立实验室或工业中传统方法混合的二甲苯的沸程,而是成功建立了两个人工神经网络(ANN)模型来分别确定起始沸点和最终沸点。结果表明,具有7个节点的多层前馈神经网络模型(MLFN-7)是确定二甲苯混合液初始沸点的最佳模型,RMS误差为0.18。而具有4个节点的MLFN模型(MLFN-4)是确定混合二甲苯最终沸点的最佳模型,RMS误差为0.75。培训和测试过程都表明我们开发的模型是可靠且精确的。我们的研究可以有效避免PX设备对人体和环境的损害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号