首页> 外文会议>2014 IEEE Winter Conference on Applications of Computer Vision >Improving background subtraction using Local Binary Similarity Patterns
【24h】

Improving background subtraction using Local Binary Similarity Patterns

机译:使用局部二进制相似性模式改善背景减法

获取原文
获取原文并翻译 | 示例

摘要

Most of the recently published background subtraction methods can still be classified as pixel-based, as most of their analysis is still only done using pixel-by-pixel comparisons. Few others might be regarded as spatial-based (or even spatiotemporal-based) methods, as they take into account the neighborhood of each analyzed pixel. Although the latter types can be viewed as improvements in many cases, most of the methods that have been proposed so far suffer in complexity, processing speed, and/or versatility when compared to their simpler pixel-based counterparts. In this paper, we present an adaptive background subtraction method, derived from the low-cost and highly efficient ViBe method, which uses a spatiotemporal binary similarity descriptor instead of simply relying on pixel intensities as its core component. We then test this method on multiple video sequences and show that by only replacing the core component of a pixel-based method it is possible to dramatically improve its overall performance while keeping memory usage, complexity and speed at acceptable levels for online applications.
机译:大多数最近发布的背景减法仍然可以归类为基于像素的方法,因为它们的大多数分析仍然仅使用逐像素比较来完成。由于很少有人考虑到每个分析像素的邻域,因此很少有人认为它们是基于空间的(甚至是基于时空的)方法。尽管在许多情况下可以将后者视为一种改进,但是与基于像素的简单方法相比,迄今提出的大多数方法都具有复杂性,处理速度和/或多功能性的缺点。在本文中,我们提出了一种自适应背景扣除方法,该方法是从低成本高效的ViBe方法衍生而来的,该方法使用时空二进制相似度描述符,而不是简单地依赖像素强度作为其核心成分。然后,我们在多个视频序列上测试了该方法,结果表明,仅替换基于像素的方法的核心组件,就可以显着改善其总体性能,同时将内存使用,复杂性和速度保持在在线应用可接受的水平。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号