首页> 外文会议>2014 IEEE Symposium on Computers and Communications >Decomposition of memory consumption footprints to identify problematic threads
【24h】

Decomposition of memory consumption footprints to identify problematic threads

机译:分解内存消耗足迹以识别有问题的线程

获取原文
获取原文并翻译 | 示例

摘要

Software as a Service(SaaS) solutions are state-of-the-art advancement of the cloud computing technologies that bring on new challenges in terms of cloud system management. It is the usual case where user jobs(macros, scripts, programs, etc.) are executed as threads inside platform processes making the distinction between user jobs very hard to perform. In case of a problematic thread(such as a thread with memory leakage) system administrator needs to manually detect the problematic thread or even kill the entire process harming the rest of the user jobs in the process. In this paper, we propose a novel approach based on processing the memory footprint of the problematic process. We use Fourier analysis to calculate the energy spectral densities of the memory footprints where threads with different characteristics produce different densities in case of a memory leakage. We represent a thread's memory usage characteristic as a periodic signal with a memory consumption frequency and a unit memory consumption amount. Our results show that for a process involving two threads, it is possible to distinguish the problematic thread by observing the memory footprint's energy density after the anomaly begins. We further investigate our results to relate the thread parameters with the difference between energy densities and derive guidelines on identifying the specific thread causing the problem. As a result we found out that certain thresholds exist for unit memory consumption to be able to identify the problematic thread and also the decomposability of the memory footprint has an exponential relation with the rate of memory consumption frequencies of process' threads.
机译:软件即服务(SaaS)解决方案是云计算技术的最新发展,在云系统管理方面带来了新的挑战。这是通常的情况,其中用户作业(宏,脚本,程序等)作为平台进程内的线程执行,这使得很难区分用户作业。如果出现问题线程(例如内存泄漏的线程),系统管理员需要手动检测有问题的线程,甚至杀死整个过程,从而损害该过程中的其余用户作业。在本文中,我们提出了一种基于处理问题进程的内存占用量的新颖方法。我们使用傅立叶分析来计算内存占用量的能谱密度,在内存泄漏的情况下,具有不同特征的线程会产生不同的密度。我们将线程的内存使用特性表示为具有内存消耗频率和单位内存消耗量的周期性信号。我们的结果表明,对于涉及两个线程的进程,可以通过在异常开始后观察内存占用的能量密度来区分有问题的线程。我们将进一步研究结果,以将螺纹参数与能量密度之间的差异联系起来,并得出有关确定引起该问题的特定螺纹的指导原则。结果,我们发现存在一些单位内存消耗阈值,以便能够确定有问题的线程,并且内存占用空间的可分解性与进程线程的内存消耗频率的速率呈指数关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号