首页> 外文会议>2014 IEEE Symposium on Computational Intelligence in Brain Computer Interfaces >Sensitivity analysis of Hilbert transform with band-pass FIR filters for robust brain computer interface
【24h】

Sensitivity analysis of Hilbert transform with band-pass FIR filters for robust brain computer interface

机译:带通FIR滤波器的Hilbert变换用于灵敏的大脑计算机接口的灵敏度分析

获取原文
获取原文并翻译 | 示例

摘要

Transient cortical oscillations in the form of rapid synchronization-desynchronization transitions are key candidates of neural correlates of higher cognitive activity monitored by scalp EEG and intracranial ECoG arrays. The transition period is in the order of 20-30 ms, and standard signal processing methodologies such as Fourier analysis are inadequate for proper characterization of the phenomenon. Hilbert transform-based (HT) analysis has shown great promise in detecting rapid changes in the synchronization properties of the cortex measured by high-density EEG arrays. Therefore, HT is a primary candidate of operational principles of brain computer interfaces (BCI). Hilbert transform over narrow frequency bands has been applied successfully to develop robust BCI methods, but optimal filtering is a primary concern. Here we systematically evaluate the performance of FIR filters over various narrow frequency bands before applying Hilbert transforms. The conclusions are illustrated using rabbit ECoG data. The results are applicable for the analysis of scalp EEG data for advanced BCI devices.
机译:快速同步-去同步转变形式的瞬时皮质振荡是头皮脑电图和颅内ECoG阵列监测的较高认知活动的神经相关的关键候选者。过渡周期大约为20-30毫秒,标准信号处理方法(例如傅里叶分析)不足以适当表征现象。基于希尔伯特变换(HT)的分析在检测由高密度EEG阵列测量的皮层同步特性中的快速变化方面显示出了巨大的希望。因此,HT是大脑计算机接口(BCI)的操作原理的主要候选对象。窄带上的希尔伯特变换已成功地用于开发鲁棒的BCI方法,但是最佳滤波是主要关注的问题。在这里,我们在应用希尔伯特变换之前,系统地评估了FIR滤波器在各种窄频带上的性能。结论使用兔ECoG数据进行了说明。结果适用于高级BCI设备的头皮EEG数据分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号