【24h】

GPU Acceleration of Newton's Method for Large Systems of Polynomial Equations in Double Double and Quad Double Arithmetic

机译:Double Double和Quad Double算术大型系统多项式方程组的牛顿方法的GPU加速

获取原文
获取原文并翻译 | 示例

摘要

In order to compensate for the higher cost of double double and quad double arithmetic when solving large polynomial systems, we investigate the application of the NVIDIA Tesla K20C graphics processing unit (GPU). The focus on this paper is on Newton's method, which requires the evaluation of the polynomials, their derivatives, and the solution of a linear system to compute the update to the current approximation for the solution. The reverse mode of algorithmic differentiation for a product of variables is rewritten in a binary tree fashion so all threads in a block can collaborate in the computation. For double arithmetic, the evaluation and differentiation problem is memory bound, whereas for complex quad double arithmetic the problem is compute bound. With acceleration we can double the dimension and get results that are twice as accurate in about the same time.
机译:为了补偿求解大型多项式系统时双精度和四重精度双倍算法的较高成本,我们研究了NVIDIA Tesla K20C图形处理单元(GPU)的应用。本文的重点是牛顿法,该方法需要对多项式,它们的导数和线性系统的解进行求值,以计算对解的当前近似值的更新。变量乘积的算法区分的反向模式以二叉树方式重写,因此块中的所有线程都可以在计算中进行协作。对于双重算术,评估和微分问题受内存限制,而对于复杂四重双重算术,此问题受计算限制。通过加速,我们可以将尺寸加倍,并在大约同一时间获得两倍的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号