首页> 外文会议>2013 International Conference on Computational Problem-Solving >Image fusion algorithm for visible and PMMW images based on EM and Ncut
【24h】

Image fusion algorithm for visible and PMMW images based on EM and Ncut

机译:基于EM和Ncut的可见光图像和PMMW图像融合算法

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the fusion of visible and Passive Millimeter Wave (PMMW) images, a novel region-based algorithm based on Expectation-Maximization (EM) algorithm and Normalized cut (Ncut) algorithm is proposed. Firstly, it takes advantage of the particular ability of PMMW image in presenting metal target or other plastic bomb and uses the region-growing for PMMW image to extract the potential target regions, then visual and PMMW images are weighted to get a composite image according to the contrast of potential target regions in PMMW image and background around the potential targets in visual image. Next, Ncut is applied to the composite image to obtain the appropriate region mapping image to be modeled. At last, a statistical image formation model with Gaussian mixture distortion is built and EM is used region-by-region to produce the fusion image. Since we model potential target regions within a region, this algorithm could be more meaningful than pixel-based methods and save computation cost. Meanwhile, it is excellent in suppressing noise. The experiments demonstrate the superiority of the proposed algorithm for metal target detection compared to wavelet, contourlet method and rectangle-based EM algorithm.
机译:针对可见光与无源毫米波(PMMW)图像的融合,提出了一种基于期望最大化(EM)算法和归一化切口(Ncut)算法的基于区域的算法。首先,利用PMMW图像在呈现金属目标或其他塑料炸弹中的特殊能力,并使用区域增长的PMMW图像提取潜在的目标区域,然后对视觉和PMMW图像进行加权以根据PMMW图像中潜在目标区域与视觉图像中潜在目标周围背景的对比。接下来,将Ncut应用于合成图像以获得要建模的适当区域映射图像。最后,建立了具有高斯混合畸变的统计图像形成模型,并逐个区域地使用EM产生融合图像。由于我们对区域内的潜在目标区域进行建模,因此该算法比基于像素的方法更有意义,并节省了计算成本。同时,在抑制噪声方面是极好的。实验证明了与小波,contourlet方法和基于矩形的EM算法相比,该算法在金属目标检测中的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号