首页> 外文会议>2013 IEEE Symposium on Computational Intelligence in Scheduling >An enhanced migrating birds optimization algorithm for no-wait flow shop scheduling problem
【24h】

An enhanced migrating birds optimization algorithm for no-wait flow shop scheduling problem

机译:求解无等待流水车间调度问题的改进迁鸟优化算法

获取原文
获取原文并翻译 | 示例

摘要

No-wait flow shop scheduling problem has important applications in industrial systems. Migrating birds optimization (MBO) algorithm is a new meta-heuristic inspired by the V flight formation of the migrating birds which is proven to be an effective energy saving formation. This paper proposes an enhanced migrating birds optimization (EMBO) algorithm for no-wait flow shop scheduling with total flow time criterion. Because MBO is a neighborhood-based search heuristic, the population is divided into multiple migrating birds in proposed EMBO in an attempt to avoid local optima. Three heuristics are used for initializing the population. An effective neighborhood structure is used for each loop of EMBO. Extensive computational experiments are carried out based on a set of well-known flow shop benchmark instances that are considered as no-wait flow shop instances. Computational results and comparisons show that the proposed EMBO algorithm performs significantly better than the existing ones for no-wait flow shop scheduling problem with total flow time criterion.
机译:无等待流水车间调度问题在工业系统中具有重要的应用。迁徙鸟类优化(MBO)算法是受迁徙鸟类V飞行形态启发的一种新的元启发式方法,已被证明是一种有效的节能形态。提出了一种基于总流时间准则的无等待流水车间调度的改进迁徙鸟优化算法。由于MBO是一种基于邻域的搜索试探法,因此在拟议的EMBO中将种群分为多个迁徙鸟类,以试图避免局部最优。三种启发式方法用于初始化总体。有效的邻域结构用于EMBO的每个循环。基于一组众所周知的流水车间基准实例(被视为无等待流水车间实例)进行了广泛的计算实验。计算结果和比较结果表明,对于总流量时间为准的无等待流水车间调度问题,所提出的EMBO算法的性能明显优于现有算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号