首页> 外文会议>2013 ACM/IEEE International Conference on Information Processing in Sensor Networks >Strip, Bind, and Search: A method for identifying abnormal energy consumption in buildings
【24h】

Strip, Bind, and Search: A method for identifying abnormal energy consumption in buildings

机译:剥离,绑定和搜索:一种识别建筑物中异常能耗的方法

获取原文
获取原文并翻译 | 示例

摘要

A typical large building contains thousands of sensors, monitoring the HVAC system, lighting, and other operational sub-systems. With the increased push for operational efficiency, operators are relying more on historical data processing to uncover opportunities for energy-savings. However, they are overwhelmed with the deluge of data and seek more efficient ways to identify potential problems. In this paper, we present a new approach called the Strip, Bind and Search (SBS); a method for uncovering abnormal equipment behavior and in-concert usage patterns. SBS uncovers relationships between devices and constructs a model for their usage pattern relative to other devices. It then flags deviations from the model. We run SBS on a set of building sensor traces; each containing hundred sensors reporting data flows over 18 weeks from two separate buildings with fundamentally different infrastructures. We demonstrate that, in many cases, SBS uncovers misbehavior corresponding to inefficient device usage that leads to energy waste. The average waste uncovered is as high as 2500 kWh per device.
机译:典型的大型建筑物包含成千上万个传感器,用于监视HVAC系统,照明和其他运行子系统。随着运营效率的不断提高,运营商越来越依赖历史数据处理来发现节能机会。但是,它们不堪重负,涌现了大量数据,并寻求更有效的方法来识别潜在问题。在本文中,我们提出了一种称为剥离,绑定和搜索(SBS)的新方法。一种发现异常设备行为和音乐会中使用模式的方法。 SBS发现设备之间的关系,并为它们相对于其他设备的使用模式构建模型。然后标记与模型的偏差。我们在一组建筑物传感器迹线上运行SBS。每个传感器包含数百个传感器,它们报告来自两个具有根本不同基础结构的独立建筑物在18周内的数据流。我们证明,在许多情况下,SBS会发现与效率低下的设备使用相对应的不良行为,从而导致能源浪费。每个设备发现的平均浪费高达2500 kWh。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号