首页> 外文会议>International Conference on Computer Science and Service System;CSSS 2012 >Compare with Three Models for Price Forecasting on Steel Market
【24h】

Compare with Three Models for Price Forecasting on Steel Market

机译:与三种钢材市场价格预测模型比较

获取原文
获取原文并翻译 | 示例

摘要

In order to get the excellent accuracy for price forecast in the steel market, the adaptive Radial Basis Function (RBF) Neural Network (NN) model, Back Propagation (BP) NN model and Sliding Window (SW) model are utilized to forecast the price of the steel products in this paper. Eight steel products, which extracted from Shanghai Baoshan steel market of China at January, 2011 to December 2011, are selected to forecast the price about one week and compare the Mean Absolute Errors (MAE) by RBF model, BP model and ASW model respectively. One main parameter of each model's is changed step size by programs automatically. Experiments demonstrate that the ASW model is best model which can get lowest Mean Absolute Errors (MAE). Experiment results prove that the proposed ASW model is meaningful and useful to analyze and to research the price forecast in the steel products market.
机译:为了获得出色的钢材市场价格预测准确性,利用自适应径向基函数(RBF)神经网络(NN)模型,反向传播(BP)NN模型和滑动窗口(SW)模型来预测价格本文中的钢铁产品。选择从2011年1月至2011年12月从中国上海宝山钢铁市场提取的八种钢材来预测价格约一周,并分别通过RBF模型,BP模型和ASW模型比较平均绝对误差(MAE)。每个模型的一个主要参数由程序自动更改步长。实验表明,ASW模型是最佳模型,可以得到最低的平均绝对误差(MAE)。实验结果证明,所提出的ASW模型对于分析和研究钢材市场的价格预测是有意义的和有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号